This Page Is Inserted by IFW Operations
and 1s not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the
original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

BLACK BORDERS

e TEXT CUT OFF AT TOP, BOTTOM OR SIDES
e FADED TEXT
e ILLEGIBLE TEXT
e SKEWED/SLANTED IMAGES
e COLORED PHOTOS
e BLACK OR VERY BLACK AND WHITE DARK PHOTOS

e GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,
please do not report the images to the
Image Problems Mailbox.

,
i
A | N
. \ | 3
X .
] *
|
; i
i

S

1
i
&

- 1
i m»
i
)
. N
1 £y
»
i
i
i
i |
1
> “ |)
e, N
LY vw 5
. 1
! . -
! 1
.
<
|
1 .
i .
.
.
.
t e : - + =)
| o e n : . e
LS el ey Eh Gk st B SRNT

“ I'L_u

. %

lal

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 94/29807
GO6F 15/40 Al)
(43) International Publication Date: 22 December 1994 (22.12.99)
(21) International Application Number: PCT/US94/06320 | (81) Designated States: JP, European patent (AT, BE, CH, DE, DK,
ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) Interpnational Filing Date: 2 June 1994 (02.06.94)
Published
(30) Priority Data: With international search report. :
071,643 3 June 1993 (03.06.93) uUs Before the expiration of the time limir for amending the
claims and 1o be republished in the event of the receipt of
amendments.

(71) Applicant: NETWORK APPLIANCE CORPORATION
’ [US/US]; 295 North Bemardo Avenue, Mountain View,
CA 95054 (US).

(72) Inventors: HITZ, David; 925 Wolfe Road #23, Sunnyvale, CA
94086 (US). MALCOM, Michael; 48 South Avalon Drive,
Los Altos, CA 94022 (US). LAU, James: 11570 Upland
Way, Cupertino, CA 95014 (US). RAKITZIS, Byron; 100
North Whisman #130, Moutain View, CA 94043 US).

(74) Agents: HECKER, Gary, A. ct al.; Hecker & Harriman, 2049
Century Park East, Suite 1200, Los Angeles, CA 90067
US).

(54) Title: WRITE ANYWHERE FILE-SYSTEM LAYOUT
(57) Abstract

The present invention provides a method for keeping a file system in a consistent state and for creating read-only copies of a file
system. Changes to the file system arc tightly controlled. The file system progresses from one consistent state to another. The set of
self-consistent blocks on disk that is rooted by the root inode is referred to as a consistency point. To implement consistency poiats, new
data is written 10 unallocated blocks on disk. A pew consistency point occurs when the fsinfo block (2440) is updated by writing a new
root inode for the inode file (1210) into it. Thus, as long as the root inode is not updated, the state of the file system represented on disk
does not change. The present invention also creates snapshots (Figure 22) that are read-only copies of the file system. A spapshot uses no
disk space when it is initially created. It is designed so that many different snap shots can be created for the same file system. Unlike prior
art file systems that create a clone by duplicating the entire inode file and all of the indirect blocks, the present invention duplicates only
the inode that describes the inode file. A multi-bit free-block map file (1630) is used to prevent data from being overwritten on disk.

BNSDOCID: <WO___9429807A1_I_>

2

SATARRNAQQAARIORREEIREL

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgsaria

Benin

Brazl

Belarus
Canada

Central African Republic
Congo
Switzerland
Cbdie d'Ivoire
Cameroon
Cutna
Czechoslovakia
Czech Repubdlic
Germany
Deuamark

Spain

Finland

France

Gabon

GB
GE
GN
GR

JILELE

RER

LU
vV

[

5EE5A

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ialy

Japan

Keaya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtcostein

Sri Lanka
Luxembourg
Larvia

Moaaco

Republic of Moldova
Madagascar

Mali

Moagolis

32353

NZ

-EFEEEPEERE

h o}

UA
us
vz

INSDOCID: <WO___9429807A1_I_>

.

pyon

PCT WORLD n~rrla|_|..!5c'zr‘:ul_n,«g_tl &om ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 3 : (11) International Publication Number: WO 94/29807
GOGF 15/40 Al . =
(43) International Publication Date: 22 December 1994 (22.12.99)
(21) International Application Number: PCT/US94/06320 | (81) Designated States: JP, European patent (AT, BE, CH, DE, DK,
ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 2 June 1994 (02.06.94)
Published
(30) Priority Data: With international search report. :
071,643 3 June 1993 (03.06.93) UsS Before the expiration of the time limit Jor amending the
claims and to be republished in the event of the receipt of
amendments.

{71) Applicant: NETWORK APPLIANCE CORPORATION
’ [US/US]; 295 North Bemardo Avenue, Mountain View,
CA 95054 (US).

(72) Inventors: HITZ, David; 925 Wolfe Road #23, Sunnyvale, CA
94086 (US). MALCOM, Michacl; 48 South Avalon Drive,
Los Altos, CA 94022 (US). LAU, James; 11570 Upland
Way, Cupertino, CA 95014 (US). RAKITZIS, Byron; 100
North Whisman #130, Moutain View, CA 94043 (US).

(74) Agents: HECKER, Gary, A. ¢t al.; Hecker & Hamiman, 2049
Century Park East, Suite 1200, Los Angeles, CA 90067
(uUs).

(54) Title: WRITE ANYWHERE FILE-SYSTEM LAYOUT
(57) Abstract

The present invention provides a method for keeping a file system in a consistent state and for creating read-only copies of a file
system. Changes to the file system are tightly controlled. The file system progresses from one consistent state to another. The set of
self-consistent blocks on disk that is rooted by the root inode is referred to as a consistency point. To implement consistency points, new
data is written to unallocated blocks on disk. A new consistency point occurs when the fsinfo block (2440) is updated by writing a new
root inode for the inode file (1210) into it. Thus, as long as the root inode is not updated, the state of the file system represented on disk
does not change. The present invention also creates snapshots (Figure 22) that are read-only copies of the file system. A spapshot uses no
disk space when it is initially created. It is designed so that many different snap shots can be created for the same file system. Unlike prior
art file systems that create a clone by duplicating the entire inode file and all of the indirect blocks, the present invention duplicates only
the inode that describes the inode file. A multi-bit free-block map file (1630) is used to prevent data from being overwritten on disk.

BNSDOCID: <WQ___ 9429807A1_1_>

QRTBREAR2ZAR8QL

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

Austria
Augtralia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarnus

Canada

Ceatral African Repubdlic
Congo
Switzeriand .
Cbde d'Ivoire
Cameroon
China
Czechoslovakia
Czech Repubdlic

Germany
Dcomark
Spain
Finland
France
Gabon

SEEEEC

United Kingdom
Georgia

Guines

Greece

Huogary

Ircland

laly

Japan

Keaya

Kyrgystan
Democratic People’s Republic
of Koica
Republic of Korea
Kazakhstan
Liechtcostein

Sri Lanka
Luxembourg
Latvia

Moaaco

Repubdlic of Moldova
Madagascar

Mahi

Moagolis

SE55H0292%28828I555533

NSDOCID: <WO__9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-1-
WRITE ANYWHERE FILE-SYSTEM LAYQUT
BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

The present invention is related to the field of methods and apparatus
for maintaining a consistent file system and for creating read-only copies of the

file system.

2. BACKGROUND ART

All file systems must maintain consistency in spite of system failure. A
number of different consistency techniques have been used in the prior art for

this purpose.

One of the most difficult and time consuming issues in managing any
file server is making backups of file data. Traditional solutions have been tb
copy the data to tape or other off-line media. With some file systems, the file
server must be taken off-line during the backup process in order to ensure that
the backup is completely consistent. A recent advance in backup is the ability
to quickly "clone” (i.e.; a prior art method for creating a read-only copy of the
file system on disk) a file system, and perform a backup from the clone instead
of from the active file systerﬁ. With this type of file system, it allows the file

server to remain on-line during the backup.

BNSDOCID: <WO___0420807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

File System Consistency

A prior art file system is disclosed by Chutani, et al. in an article entitled
The Episode File System, USENIX, Winter 1992, at pages 43-59. The article
describes the Episode file system which is a file system using meta-data (i.e.,
inode tables, directories, bitmaps, and indirect blocks). It can be used as a stand-
alone or as a distributed file system. Episode supports a plurality of separate
file system hierarchies. Episode refers to the plurality of file systems ’
collectively as an "aggregate”. In particular, Episode provides a clone of each
file system for slowly changing data.

In Episode, each logical file s\ystem contains an "anode" table. An anode
table is i:he equivalent of an inode table used in file systems such as the
Berkeley Fast File System. It is a 252-byte structure. Anodes are used to store
all user data as well as meta-data in the Episode file system. An anode
describes the root directory of a file system including auxiliary files and
directories. Each such file system in Episode is referred to as a "fileset". All
data within a fileset is locatable by iterating through the anode table and
processing each file in turn. Episode creates a read-only copy of a file system,
herein referred to as a "clone", and shares data with the active file system

using Copy-On-Write (COW) techniques.

Episode uses a logging technique to recover a file system(s) after a system
crashes. Logging ensures that the file system meta-data are consistent. A
bitmap table contains information about whether each block in the file system
is allocated or not. Also, the bitmap table indicates whether or not each block
is logged. All meta-data updates are recorded in a log "container” that stores

transaction log of the aggregate. The log is processed as a circular buffer of disk

NSDOCID: <WO___9429807A1__>

10

15

20

WO 94/29807 PCT/US94/06320

-3-

blocks. The transaction logging of Episode uses logging techniques originally
developed for databases to ensure file system consistency. This technique uses
carefully order writes and a recovery program that are supplemented by

database techniques in the recovery program.

Other prior art systems including JFS of IBM and VxFS of Veritas
Corporation use various forms of transaction logging to speed the recover

process, but still require a recovery process.

Another prior art method is called the “ordered write” technique. It
writes all disk blocks in a carefully determined order so that damage is
minimized when a system failure occurs while performing a series of related
writes. The prior art attempts to ensure that inconsistencies that occur are
harmless. For instance, a few unused blocks or inodes being marked as
allocated. The primary disadvantage of this technique is that the restrictions it

places on disk order make it hard to achieve high performance.

Yet another prior art system is an elaboration of the second prior art
method referred to as an "ordered write with recovery” technique. In this
method, inconsistencies can be potentially harmful. However, the order of
writes is restricted so that inconsistencies can be found and fixed by a recovery
program. Examples of this method include the original UNIX file system and
Berkeley Fast File System (FFS). This technique does reduce disk ordering
sufficiently to eliminate the performance penalty of disk ordering. Another
disadvantage is that the recovery process is time consuming. It typically is
proportional to the size of the file system. Therefore, for example, recovering a

5 GB FFS file system requires an hour or more to perform.

BNSDOCID: <WQ___9429807A1_I_>

10

15

20

WO 94/29807 . PCT/US94/06320

File System Clones

Figure 1 is a prior art diagram for the Episode file system illustrating the
use of copy-on-write (COW) techniques for creating a fileset clone. Anode 110
comprises a first pointer 110A having a COW bit that is set. Pointer 110A
references data block 114 directly. Anode 110 comprises a second pointer 110B
having a COW bit that is cleared. Pointer 110B of anode references indirect
block 112. Indirect block 112 comprises a pointer 112A that references data
block 124 directly. The COW bit of pointer 112A is set. Indirect block 112
comprises a second pointer 112B that references data block 126. The COW bit of
pointer 112B is cleared.

A dlone anode 120 comprises a first pointer 120A that references data
block 114. The COW bit of pointer 120A is cleared. The second pointer 120B of
cone anode 120 references indirect block 122. The COW bit of pointer 120B is
cleared. In turn, indirect block 122 comprises a pointer 122A that references
data block 124. The COW bit of pointer 122A is cleared.

As illustrated in Figure 1, every direct pointer 110A, 112A-112B, 1204,
and 122A and indirect pointer 110B and 120B in the Episode file system
contains a COW bit.- Blocks that have not been modified are contained in both
the active file system and the clone, and have set (1) COW bits. The COW bitis .
cleared (0) when a block that is referenced to by the pointer has been modified

and, therefore, is part of the active file system but not the clone.

When a copy-on-write block is modified, as shown in Figure 1, a new
block is allocated and updated. The COW flag in the pointer to this new block
is then set. The COW bit of pointer 110A of original anode 110 is cleared.

NSDOCID: <WO___ 9429807A1_i_>

WO 94/29807 PCT/US94/06320

10

15

20

-5-
Thus, when the clone anode 120 is created, pointer 120A of clone anode 120
references data block 114 also. Both original anode 110 and clone anode 120
reference data block 114. Data block 124 has also been modified as indicated by
a cleared COW bit of pointer 112A in original indirect block 112. Thus, when
the clone anode is created, indirect block 122 is created. Pointer 122A of
indirect block 122 references data block 124, and the COW bit of pointer 122A is
cleared. Both indirect block 122 of the original anode 110 and indirect block 122
of clone anode 120 reference data block 124.

Figure 1 illustrates copying of an anode to create a clone anode 120 for a
single file. However, clone anodes must be created for every file having
changed data blocks in the file system. At the time of the clone, all inodes
must be copied. Creating clone anodes for every modified file in the file
systém can consume significant amounts of disk space. Further, Episode is not
capable of supporﬁhg multiple clones since each pointer has only one COW
bit. A single COW bit is not able to distinguish more than one clone. For

more than one clone, there is not a second COW bit that can be set.

A fileset "clone" is a read-only copy of an active fileset wherein the
active fileset is readable and writable. Clones are implemented using COW
techniques, and share data blocks with an active fileset on a block-by-block
basis. Episode implements cloning by copying each anode stored in a fileset.
When initially cloned, both the writable anode of the active fileset and the
cloned anode both point to the same data block(s). However, the disk
addresses for direct and indirect blocks in the original anode are tagged as
COW. Thus, an update to the writable fileset does not affect the clone. When
a COW block is modified, a new block is allocated in the file system and

BNSDOCID: <WO____9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-6-
updated with the modification. The COW flag in the pointer to this new block

is cleared

The prior art Episode system creates clones that duplicate the entire
inode file and all of the indirect blocks in the file system. Episode duplicates all
inodes and indirect blocks so that it can set a Copy-On-Write (COW) bit in all
pointers to blocks that are used by both the active file system and the clone. In
Episode, it is important to identify these blocks so that new data written to the
active file system does not overwrite "old" data that is part of the clone and,

therefore, must not change.

Creating a clone in the prior art can use up as much as 32MBona1GB
disk. The prior art uses 256 MB of disk space on a1 GB disk (for 4 KB blocks) to
keep eight clones of the file system. Thus, the prior art cannot use large
numbers of clones to prevent loss of data. Instead it used to facilitate backup of
the file system onto an auxiliary storage means other than the disk drive, such
as a tape backup device. Clones are used to backup a file system in a consistent
state at the instant the clone is made. By cloning the file system, the clone can
be backed up to the auxiliary storage means without shutting down the active
file system, and thereby preventing users from using the file system. Thus,
clones allow users to continue accessing an active file system while the file
system, in a consistent state is backed up. Then the done is deleted once the
backup is completed. Episode is not capable of supporting multiple clones
since each pointer has only one COW bit. A single COW bit is not able to
distinguish more than one clone. For more than one clone, there is no second

COW bit that can be set.

INSDOCID: <WO___9429807A1_I_>

WO 94/29807 PCT/US94/06320

-7

A disadvantage of the prior art system for creating file system clones is
that it involves duplicating all of the inodes and all of the indirect blocks in
the file system. For a system with many small files, the inodes alone can
consume a significant percentage of the total disk space in a file system. For

5 example, a 1 GB file system that is filled with 4 KB files has 32 MB of inodes.
Thus, creating an Episode clone consumes a significant amount of disk space,
and generates large amounts (i.e., many megabytes) of disk tr;affic. As a result
of these conditions, creating a clone of a file system takes a significant amount
of time to cornplete. |

10

Another disadvantage of the prior art system is that it makes it difficult
to create multiple clones of the same file system. The result of this is that
clones tend to be used, one at a time, for short term operations such as backing

up the file system to tape, and are then deleted.

BNSDOCID: <WO___9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-8-

SUMMARY OF THE INVENTION

The present invention provides a method for maintaining a file system
in a consistent state and for creating read-only copies of a file system. Changes
to the file system are tightly controlled to maintain the file system in a
consistent state. The file system progresses from one self-consistent state to
another self-consistent state. The set of self-consistent blocks on disk that is
rooted by the root inode is referred to as a consistency point (CP). To
implement consistency pbints, WAFL always writes new data to unallocated
blocks on disk. If never overwrites existing data. A new consistency point
occurs when the fsinfo block is updated by writing a new root inode for the
inode file into it. Thus, as long as the root inode is not updatea, the state of the

file system represented on disk does not change.

The present invention also creates snapshots, which are virtual
read-only copies of the file system. A snapshot uses no disk space when it is
initially created. It is designed so that many different snapshots can be created
for the same file system. Unlike prior art file systems that create a clone by
duplicating the entire inode file and all of the indirect blocks, the present
invention duplicates only the inode that describes the inode file. Thus, the
actual disk space required for a snapshot is only the 128 bytes used to store the
duplicated inode. The 128 bytes of the present invention required for a
snapshot is significantly less than the many megabytes used for a clone in the

prior art.

The present invention prevents new data written to the active file
system from overwriting "old" data that is part of a snapshot(s). It is necessary

that old data not be overwritten as long as it is part of a snapshot. This is

INSDOCID: <WO___9429807A1_1_>

WO 94/29807 PCT/US94/06320

-9.
accomplished by using a multi-bit free-block map. Most prior art file systems
use a free block map having a single bit per block to indicate whether or not a
block is allocated. The present invention uses a block map having 32-bit
entries. A first bit indicates whether a block is used by the active file system,

5 and 20 remaining bits are used for up to 20 snapshots, however, some bits of

the 31 bits may be used for other purposes.

BNSDOCID: <WQ___9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-10-

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a prior art "clone” of a file system.
Figure 2 is a diagram illustrating a list of inodes having dirty buffers.
Figure 3 is a diagram illustrating an on-disk inode of WAFL.

Figures 4A-4D are diagrams illustrating on-disk inodes of WAFL having

different levels of indirection.

Figure 5 is a flow diagram illustrating the method for generating a

consistency point.

Figure 6 is a flow diagram illustrating step 530 of Figure 5 for generating

a consistency point.

Figure 7 is a flow diagram illustrating step 530 of Figure 5 for creating a

snapshot.

Figure 8 is a diagram illustrating an incore inode of WAFL according to

the present invention.

Figures 9A-9D are diagrams illustrating incore inodes of WAFL having

different levels of indirection according to the present invention.

Figure 10 is a diagram illustrating an incore inode 1020 for a file. -

NSDOCID: <WOQ___9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-11-

Figures 11A-11D are diagrams illustrating a block map (blkmap) file

according to the present invention.

Figure 12 is a diagram illustrating an inode file according to the present

invention.

Figures 13A-13B are diagrams illustrating an inode map (inomap) file

according to the present invention.

Figure 14 is a diagram illustrating a directory according to the present

invention.

Figure 15 is a diagram illustrating a file system information (fsinfo)

structure.
Figure 16 is a diagram illustrating the WAFL file system.

Figures 17A-17L are diagrams illustrating the generation of a consistency

point.
Figures 18A-18C are diagrams illustrating generation of a snapshot.
Figure 19 is a diagram illustrating changes to an inode file.

Figure 20 is a diagram illustrating fsinfo blocks used for maintaining a

file system in a consistent state.

BNSDOCID: <WQ___9428807A1_I_>

WO 94/29807 PCT/US94/06320

-12-
Figures 21A-21F are detailed diagrams illustrating generations of a

snapshot.

Figure 22 is a diagram illustrating an active WAFL file system having

5 three snapshots that each reference a common file; and,

Figures 23A-23B are diagrams illustrating the updating of atime.

INSDOCID: <WQO____9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-13 -

DETATLED DESCRIPTION OF THE PRESENT INVENTION

A system for creating read-only copies of a file system is described. In
the following description, numerous specific details, such as number and
nature of disks, disk block sizes, etc., are described in detail in order to provide
a more thorough deséription of the present invention. It will be apparent,
however, to one skilled in the art, that the present invention may be practiced
without these specific details. In other instances, well-known features have
not been described in detéil so as not to unnecessarily obscure the present

invention.
WRITE ANYWHERE FILE-SYSTEM LAYOUT

The present invention uses a Write Anywhere File-system Layout
(WAFL). This disk format system is block based (i.e., 4 KB blocks that havé no
fragments), uses inodes to describe its files, and includes directories that are
simply specially formatted files. WAFL uses files to store meta-data that
describes the layout of the file system. WAFL meta-data files include: an
inode file, a block map (blkmap) file, and an inode map (inomap) file. The
inode file contains the inode table for the file system. The blkmap file
indicates which disk blocks are allocated. The inomap file indicates which
inodes are allocated. On-disk and incore WAFL inode distinctions are

discussed below.

On-Disk WAFL Inodes

WAFL inodes are distinct from prior art inodes. Each on-disk WAFL
inode points to 16 blocks having the same level of indirection. A block

number is 4-bytes long. Use of block numbers having the same level of

BNSDOCID: <WO___9429807A1_|_>

10

15

20

WO 94/29807 PCT/US94/06320

-14-

indirection in an inode better facilitates recursive processing of a file. Figure 3
is a block diagram illustrating an on-disk inode 310. The on-disk inode 310 is
comprised of standard inode information 310A and 16 block number entries
310B having the same level of indirection. The inode information 310A
comprises information about the owner of a file, permissions, file size, access
time, etc. that are well-known to a person skilled in the art. On-disk inode 310
is unlike prior art inodes that comprise a plurality of block numbers having
different levels of indirection. Keeping all block number entries 310B in an
inode 310 at the same level of indirection simplifies file system

implementation.’

For a small file having a size of 64 bytes or less, data is stored directly in
the inode itself instead of the 16 block numbers. Figure 4A is a diagram
illustrating a Level 0 inode 410 that is similar to inode 310 shown in Figure 3.
However, inode 410 comprises 64-bytes of data 410B instead of 16 block
numbers 310B. Therefore, disk blocks do not need to be allocated for very
small files.

For a file having a size of less than 64 KB, each of the 16 block numbers
directly references a 4 KB data block. Figure 4B is a diagram illustrating a Level
1 inode 310 comprising 16 block numbers 310B. The block number entries 0-15
point to corresponding 4 KB data blocks 420A-420C.

For a file haviﬁg a size that is greater than or equal to 64 KB and is less
than 64 MB, each of the 16 block numbers references a single-indirect block. In
turn, each 4 KB single-indirect block comprises 1024 block numbers that
reference 4 KB data blocks. Figure 4C is a diagram illustrating a Level 2 inode
310 comprising 16 block numbers 310B that reference 16 single-indirect blocks

NSDOCID: <WO___9420807A1_1_>

WO 94/29807 PCT/US94/06320

10

15

20

-15-

430A-430C. As shown in Figure 4C, block number entry 0 points to
single-indirect block 430A. Single-indirect block 430A comprises 1024 block
numbers that reference 4 KB data blocks 440A-440C. Similarly, single-indirect
blocks 430B-430C can each address up to 1024 data blocks.

For a file size greater than 64 MB, the 16 block numbers of the inode
reference double-indirect blocks. Each 4 KB double-indirect block comprises
1024 block numbers pointing to corresponding single-indirect blocks. In turn,
each single-indirect block comprises 1024 block numbers that point to 4KB data
blocks. Thus, up'to 64 GB can be addressed. Figure 4D is a diagram illustrating
a Level 3 inode 310 comprising 16 block numbers 310B wherein block number
entries 0, 1, and 15 reference double-indirect blocks 470A, 470B, and 470C,
respectively. Double-indirect block 470A comprises 1024 block number entries
0-1023 that point to 1024 single-indirect blocks 480A-480B. Each single-indirect
block 480A-480B, in turn, references 1024 data blocks. As shown in Figure 4D,
single-indirect block 480A references 1024 data blocks 490A-490C and
single-indirect block 480B references 1024 data blocks 490C-490F.

Incore WAFL Inodes

Figure 8 is a block diagram illustrating an incore WAFL inode 820. The
incore inode 820 comprises the information of on-disk inode 310 (shown in
Figure 3), a WAFL buffer data structure 820A, and 16 buffer pointers 820B. A
WAFL incore inode has a size of 300 bytes. A WAFL buffer is an incore (in
memory) 4 KB equivalent of the 4 KB blocks that are stored on disk. Incore
inode 820 is unlike prior art inodes that reference buffers having different
levels of indirection. Each incore WAFL inode 820 points to 16 buffers having
the same level of indirection. A buffer pointer is 4-bytes long. Keeping all

buffer pointers 820B in an inode 820 at the same level of indirection simplifies

BNSDOCID: <WO__9429807A1_|_>

10

15

20

WO 94/29807 PCT/US94/06320

-16 -

file system implementation. Incore inode 820 also contains incore
information 820C comprising a dirty flag, an in-consistency point (IN_CP) flag,
and pointers for a linked list. The dirty flag indicates that the inode itself has
been modified or that it references buffers that have changed. The IN_CP flag
is used to mark an inode as being in a consistency point (described below). The

pointers for a linked list are described below.

Figure 10 is a diagram illustrating a file referenced by a WAFL inode
1010. The file comprises indirect WAFL buffers 1020-1024 and direct WAFL
buffers 1030-1034: The WAFL in-core inode 1010 comprises standard inode
information 1010A (including a count of dirty buffers), a WAFL buffer data
structure 1010B, 16 buffer pointers 1010C and a standard on-disk inode 1010D.
The in-core WAFL inode 1010 has a size of approximately 300 bytes. The
on-disk inode is 128 bytes in size. The WAFL buffer data structure 1010B
comprises two pointers where the first one references the 16 buffer pointers

1010C and the second references the on-disk block numbers 1010D.

Each inode 1010 has a count of dirty buffers that it references. ‘An inode
1010 can be put in the list of dirty inodes and/or the list of inodes that have
dirty buffers. When all dirty buffers referenced by an inode are either
scheduled to be written to disk or are written to disk, the count of dirty buffers
to inode 1010 is set to zero. The inode 1010 is then requeued according to its
flag (i.e., no dirty buffers). This inode 1010 is cleared before the next inode is
processed. Further the flag of the inode indicating that it is in a consistency

point is cleared. The inode 1010 itself is written to disk in a consistency point.

The WAFL buffer structure is illustrated by indirect WAFL buffer 1020.
WATFL buffer 1020 comprises a WAFL buffer data structure 1020A, a 4 KB

INSDOCID: <WO___9429807A1_I_>

WO 94/29807 : PCT/US94/06320

10

15

20

-17 -
buffer 1020B comprising 1024 WAFL buffer pointers and a 4 KB buffer 1020C
comprising i024 on-disk block numbers. The WAFL buffer data structure is 56
bytes in size and comprises 2 pointers. One pointer of WAFL buffer data
structure 1020A references 4 KB buffer 1020B and a second pointer references
buffer 1020C. In Figure 10, the 16 bufufer pointers 1010C of WAFL inode 1010
point to the 16 single-indirect WAFL buffers 1020-1024. In turn, WAFL buffer
1020 references 1024 direct WAFL buffer structures 1030-1034. WAFL buffer
1030 is representative direct WAFL buffers.

Direct WAFL buHer 1030 comprises WAFL buffer data structure 1030A
and a 4 KB direct buffer 1030B containing a cached version of a corresponding
on-disk 4 KB data block. Direct WAFL buffer 1030 does not comprise a 4 KB
buffer such as buffer 1020C of indirect WAFL buffer 1020. The second buffer
pointer of WAFL buffer data structure 1030A is zeroed, and therefore does not
point to a second 4 KB buffer. This prevents inefficient use of memory because

memory space would be assigned for an unused buffer otherwise.

In the WAFL file system as shown in Figure 10, a WAFL in-core inode
structure 1010 references a tree of WAFL buffer structures 1020-1024 and 1030-
1034. It is similar to a tree of blocks on disk referenced by standard inodes
comprising block numbers that pointing to indirect and/or direct blocks. Thus,
WAFL inode 1010 contains not only the on-disk inode 1010D comprising 16
volume block numbers, but also comprises 16 buffer pointers 1010C pointing to-
WAFL buffer structures 1020-1024 and 1030-1034. WAFL buffers 1030-1034

contain cached contents of blocks referenced by volume block numbers.

The WAFL in-code inode 1010 contains 16 buffer pointers 1010C. In
turn, the 16 buffer pointers 1010C are referenced by a WAFL buffer structure

BNSDOCID: <WO___9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-18-

1010B that roots the tree of WAFL buffers 1020-1024 and 1030-1034. Thus, each
WAFL inode 1010 contains a WAFL buffer structure 1010B that points to the 16
buffer pointers 1010C in the inode 1010. This facilitates algorithms for
handling trees of buffers that are implemented recursively. If the 16 buffer
pointers 1010C in the inode 1010 were not represented by a WAFL buffer
structure 1010B, the recursive algorithms for operating on an entire tree of

buffers 1020-1024 and 1030-1034 would be difficult to implement.

Figures 9A-9D are diagrams illustrating inodes having different levels of
indirection. In Figures 9A-9D, simplified indirect and direct WAFL buffers are
illustrated to show indirection. However, it should be understood that the
WAFL buffers of Figure 9 represent corresponding indirect and direct buffers of
Figure 10. For a small file having a size of 64 bytes or less, data is stored directly
in the inode itself instead of the 16 buffer pointers. Fiéure 9A is a diagram
illustrating a Level 0 inode 820 that is the same as inode 820 shown in Figure 8
except that inode 820 comprises 64-bytes of data 920B instead of 16 buffer
pointers 820B. Therefore, additional buffers are not allocated for very small
files.

For a file having a size of less than 64 KB, each of the 16 buffer pointers
directly references a 4 KB direct WAFL buffer. Figure 9B is a diagram
illustrating a Level 1 inode 820 comprising 16 buffer pointers 820B. The buffer
pointers PTR0O-PTR15 point to corresponding 4 KB direct WAFL buffers
922A-922C.

For a file having a size that is greater than or equal to 64 KB and is less
than 64 MB, each of the 16 buffer pointers references a single-indirect WAFL
buffer. In turn, each 4 KB single-indirect WAFL buffer comprises 1024 buffer

NSDOCID: <WO__0429807A1_I_>

10

15

20

" WO 94/29807 PCT/US94/06320

-19-

pointers that reference 4 KB direct WAFL buffers. Figure 9C is a diagram
illustrating a Level 2 inode 820 comprising 16 buffer pointers 820B that
reference 16 single-indirect WAFL buffers 930A-930C. As shown in Figure 9C,
buffer pointer PTRO points to single-indirect WAFL buffer 930A.
Single-indirect WAFL buffer 930A comprises 1024 pointers that reference 4 KB
direct WAFL buffers 940A-940C. Similarly, single-indirect WAFL buffers
930B-930C can each address up to 1024 direct WAFL buffers.

For a file size greater than 64 MB, the 16 buffer pointers of the inode .
reference double-indirect WAFL buffers. Each 4 KB double-indirect WAFL
buffer comprises 1024 pointers pointing to corresponding single-indirect
WAFL buffers. In turn, each single-indirect WAFL buffer comprises 1024
pointers that point to 4KB direct WAFL buffers. Thus, up to 64 GB can be
addressed. Figure 9D is a diagram illustrating a Level 3 inode 820 comprising
16 pointers 820B wherein pointers PTRO, PTR1, and PTR15 reference
double-indirect WAFL buffers 970A, 970B, and 970C, respectively.
Double-indirect WAFL buffer 970A comprises 1024 pointers that point to 1024
single-indirect WAFL buffers 980A-980B. Each single-indirect WAFL buffer
980A-980B, in turn, references 1024 direct WAFL buffers. As shown in Figure
9D, single-indirect WAFL buffer 980A references 1024 direct WAFL buffers
990A-990C and single-indirect WAFL buffer 980B references 1024 direct WAFL
buffers 990D-990F.

Directories

Directories in the WAFL system are stored in 4 KB blocks that are
divided into two sections. Figure 14 is a diagram illustrating a directory block
1410 according to the present invention. Each directory block 1410 cohxprises a
first section 1410A comprising fixed length directory entry structures 1412-1414

BNSDOCID: <WO___9429807A1_|_>

10

15

20

WO 94/29807 PCT/US94/06320

-20-

and a second section 1410B containing the actual directory names 1416-1418.
Each directory entry also contains a file id and a generation. This information
identifies what file the entry references. This information is well-known in
the art, and therefore is not illustrated in Figure 14. Each entry 1412-1414 in the
first section 1410A of the directory block has a pointer to its name in the second
section 1410B. Furthér, each entry 1412-1414 includes a hash value dependent
upon its name in the second section 1410B so that the name is examined only
when a hash hit (a hash match) occurs. For example, entry 1412 of the first
section 1410A comprises a hash value 1412A and a pointer 1412B. The hash
value 1412A is a value dependent upon the directory name
"DIRECTORY_ABC" stored in variable length entry 1416 of the second section
1410B. Pointer 1412B of entry 1410 points to the variable length entry 1416 of
second section 1410B. Using fixed length directory entries 1412-1414 in the first
section 1410A speeds up the process of name lookup. A calculation is not
required to find the next entry in a directory block 1410. Further, keeping
entries 1412-1414 in the first section small 1410A improves the hit rate for file

systems with a line-fill data cache.
Meta-Data

WAFL keeps information that describes a file system in files known as
meta-data. Meta-data comprises an inode file, inomap file, and a blkmap file.
WAPFL stores its meta-data in files that may be written anywhere on a disk.
Because all WAFL meta-data is kept in files, it can be written to any location

just like any other file in the file system.

An first meta-data file is the "inode file" that contains inodes describing

all other files in the file system. Figure 12 is a diagram illustrating an inode

NSDOCID: <WO___9429807A1_1_>

10

15

20

WO 94/29807 PCT/US94/06320
-21-

file 1210. The inode file 1210 may be written anywhere on a disk unlike prior
art systems that write "inode tables” to a fixed location on disk. The inode file
1210 contains an inode 1210A-1210F for each file in the file system except for
the inode file 1210 itself. The inode file 1210 is pointed to by an inode referred
to as the "root inode". The root inode is kept in a fixed location on disk
referred to as the file system information (fsinfo) block described below. The
inode file 1210 itself is' stored in 4 KB blocks on disk (or 4 KB buffers in
memory). Figure 12 illustrates that inodes 1210A-1210C are stored in a 4 KB
buffer 1220. For on-disk inode sizes of 128 bytes, a 4 KB buffer (or block)
comprises 32 inodes. The incore inode file 1210 is composed of WAFL buffers
1220. When an in.core inode (i.e., 1210A) is loaded, the on-disk inode part of
the incore inode 1210A is copied in for the buffer 1220 of the inode file 1210.
The buffer data itself is loaded from disk. Writing data to disk is done in the
reverse order. The incore inode 1210A, which is a copy of the ondisk inode, is
copied to the corresponding buffer 1220 of the inode file 1210. Then, the inode
file 1210 is write-allocated, and the data stored in the buffer 1220 of the inode
file 1210 is written to disk. |

Another meta-data file is the "block map"” (blkmap) file. Figure 11A is a
diagram illustrating a blkmap file 1110. The blkmap file 1110 contains a 32-bit
entry 1110A-1110C for each 4 KB block in the disk system. It also serves as a
free-block map file. The blkmap file 1110 indicates whether or not a disk block
has been allocated. Figure 11B is a diagram of a block entry 1110A of blkmap
file 1110 (shown in Figure 11A). As shown in Figure 11B, entry 1110A is
comprised of 32 bits (BIT0-BIT31). Bit 0 (BITO) of entry 1110A is the active file
system bit (FS-BIT). The FS-bit of entry 1110A indicates whether or not the
corresponding block is part of the active file system. Bits 1-20 (BIT1-BIT20) of
entry 1110A are bits that indicate whether the block is part of a correspbnding

BNSDOCID: «<WO__9428807A1_|_>

10

15

20

WO 94/29807 PCT/US94/06320

-22-

snapshot 1-20. The next upper 10 bits (BIT21-BIT30) are reserved. Bit 31
(BIT31) is the consistency point bit (CP-BIT) of entry 1110A.

A block is available as a free block in the file system when all bits
(BITO-BIT31) in the 32-bit entry 1110A for the block are clear (reset to a value of
0). Figure 11C is a diagram illustrating entry 1110A of Figure 11A indicating
the disk block is free. Thus, the block referenced by entry 1110A of blkmap file
1110 is free when bits 0-31 (BIT0-BIT31) all have values of 0. Figure 11D is a
diagram illustrating entry 1110A of Figure 11A indicating an allocated block in
the active file system. When bit 0 (BITO), also referred to as the FS-bit, is set to
a value of 1, the entry 1110A of blkmap file 1110 indicates a block that is part of
the active file system. Bits 1-20 (BIT1-BIT20) are used to indicate corresponding
snapshots, if any, that reference the block. Snapshots are described in detail
below. If bit 0 (BITO) is set to a value of 0, this does not necessarily indicate that
the block is available for allocation. All the snapshot bits must also be zero for
the block to be allocated. Bit 31 (BIT31) of enﬁ'y 1110A always has the same
state as bit 0 (BITO) on disk, however, when loaded into memory bit 31 (BIT31)

is used for bookkeeping as part of a consistency point.

Another meta-data file is the "inode map"” (inomap) file that serves as a
free inode map. Figure 13A is a diagram illustrating an inomap file 1310. The
inomap file 1310 contains an 8-bit entry 1310A-1310C for each block in the
inode file 1210 shown in Figure 12. Each entry 1310A-1310C is a count of
allocated inodes in the corresponding block of the inode file 1210. Figure 13A
shows values of 32, 5, and 0 in entries 1310A-1310C, respectively. The inode
file 1210 must still be inspected to find which inodes in the block are free, but
does not require large numbers of random blocks to be loaded into memory

from disk. Since each 4 KB block 1220 of inode file 1210 holds 32 inodes, the

NSDOCID: <WO__9429807A1_1_>

10

15

20

WO 94/29807 PCT/US94/06320

-23-

8-bit inomap entry 1310A-1310C for each block of inode file 1210 can have
values ranging from 0 to 32. When a block 1220 of an inode file 1210 has no
inodes in use, the entry 1310A-1310C for it in inomap file 1310 is 0. When all
the inodes in the block 1220 inode file 1210 are in use, the entry 1310A-1310C of
the inomap file 1310 has a value of 32.

Figure 13B is a diagram illustrating an inomap file 1350 that references
the 4 KB blocks 1340A-1340C of inode file 1340. For example, inode file 1340
stores 37 inodes in three 4 KB blocks 1340A-1340C. Blocks 1340A-1340C of

inode file 1340 coritain 32, 5, and 0 used inodes, respectively. Entries
1350A-1350C of blkmap file 1350 reference blocks 1340A-1340C of inode file
1340, respectively. Thus, the entries 1350A-1350C of inomap file have values
of 32, 5, and 0 for blocks 1340A-1340C of inode file 1340. In turn, entries
1350A-1350C of inomap file indicate 0, 27, and 32 free inodes in blocks
1340A-1340C of inode file 1340, respectively.

Referring to Figure 13, usiﬁg a bitmap for the entries 1310A-1310C of
inomap file 1310 instead of counts is disadvantageous since it would require 4
bytes per entry 1310A-1310C for block 1220 of the inode file 1210 (shown in
Figure 12) instead of one byte. Free inodes in the block(s) 1220 of the inode file
1210 do not need to be indicated in the inomap file 1310 because the inodes

themselves contain that information.

Figure 15 is a diagram illustrating a file system information (fsinfo)
structure 1510. The root inode 1510B of a file system is kept in a fixed location
on disk so that it can be located during booting of the file system. The fsinfo
block is not a meta-data file but is part of the WAFL system. The root inode
1510B is an inode referencing the inode file 1210. It is part of the file system

BNSDOCID: <WO__9429807A1_1_>

WO 94/29807 PCT/US94/06320

-24-
information (fsinfo) structure 1510 that also contains information 1510A
including the number of blocks in the file system, the creation time of the file
system, etc. The miscellaneous information 1510A further comprises a
checksum 1510C (described below). Except for the root inode 1510B itself, this
5 information 1510A can be kept in a meta-data file in an alternate embodiment.

Two identical copies of the fsinfo structure 1510 are kept in fixed locations on
disk.

Figure 16 is a diagi'am illustrating the WAFL file system 1670 in a

10 consistent state on disk comprising two fsinfo blocks 1610 and 1612, inode file
1620, blkmap file 1630, inomap file 1640, root directory 1650, and a typical file
(or directory) 1660. Inode file 1620 is comprised of a plurality of inodes
1620A-1620D that reference other files 1630-1660 in the file system 1670. Inode
1620A of inode file 1620 references blkmap file 1630. Inode 1620B references-

15 inomap file 1640. Inode 1620C references root directory 1650. Inode 1620D
references a typical file (or directory) 1660. Thus, the inode file points to all
files 1630-1660 in the file system 1670 except for fsinfo blocks 1610 and 1612.
Fsinfo blocks 1610 and 1612 each contain a copy 1610B and 1612B of the inode of
the inode file 1620, respectively. Because the root inode 1610B and 1612B of

20 fsinfo blocks 1610 and 1612 describes the inode file 1620, that in turn describes
the rest of the files 1630-1660 in the file system 1670 including all meta-data
files 1630-1640, the root inode 1610B and 1612B is viewed as the root of a tree of
blocks. The WAFL system 1670 uses this tree structure for its update method

(consistency point) and for implementing snapshots, both described below.

NSDOCID: «<WO__9429807A1_1_>

10

15

20

WO 94/29807 PCT/US94/06320

List of Inodes Having Dirty Blocks

WAFL in-core inodes (i.e., WAFL inode 1010 shown in Figure 10) of the
WATFL file system are maintained in different linked lists according to their
status. Inodes that reference dirty blocks are kept in a dirty inode list as shown
in Figure 2. Inodes containing valid data that is not dirty are kept in a separate
list and inodes that have no valid data are kept in yet another, as is
well-known in the art. The present invention utilizes a list of inodes having
dirty data blocks that facilitates finding all of the inodes that need write

allocations to be done.

Figure 2 is a diagram illustrating a list 210 of dirty inodes according to
the present invention. The list 210 of dirty inodes comprises WAFL in-core
inodes 220-1750. As shown in Figure 17, each WAFL in-core inode 220-250
comprises a pointer 220A-250A, respectively, that points to another inode in
the linked list. For example, WAFL inodes 220-250 are stored in memory at
locations 2048, 2152, 2878, 3448 and 3712, respectively. Thus, pointer 220A of
inode 220 contains address 2152. It points therefore to WAFL inode 222. In
turn, WAFL inode 222 points to WAFL inode 230 using address 2878. WAFL
inode 230 points to WAFL inode 240. WAFL inode 240 points to inode 1750.
The pointer 250A of WAFL inode 250 contains a null value and therefore does
not point to another inode. Thus, it is the last inode in the list 210 of dirty
inodes. Each inode in the list 210 represents a file comprising a tree of buffers
as depicted in Figure 10. At least one of the buffers referenced by each inode
220-250 is a dirty buffer. A dirty buffer contains modified data that must be
written to a new disk location in the WAFL system. WAFL always writes dirty

buffers to new locations on disk.

BNSDOCID: <WO__9429807A1_1_>

10

15

20

WO 94/29807 PCT/US94/06320

-26 -

CONSISTENCY POINTS

The WAFL disk structure described so far is static. In the present
invention, changes to the file system 1670 are tightly controlled to maintain
the file system 1670 in a consistent state. The file system 1670 progresses from
one self-consistent state to another self-consistent state. The set (or tree) of
self-consistent blocks on disk that is rooted by the root inode 1510B is referred
to as a consistency point (CP). To implement consistency points, WAFL always
writes new data to unallocated blocks on disk. It never overwrites existing
data. Thus, as long as the root inode 1510B is not updated, the state of the file
system 1670 represented on disk does not change. However, for a file system
1670 to be useful, it must eventually refer to newly written data, therefore a

new consistency point must be written.

Referring to Figure 16, a new consistency point is written by first
flushing all file system blocks to new locations on disk (including the blocks in
meta-data files such as the inode file 1620, bikmap file 1630, and inomap file
1640). A new root inode 1610B and 1612B for the file system 1670 is then
written to disk. With this method for atomically updating a file system, the
on-disk file system is never inconsistent. The on-disk file system 1670 reflects
an old consistency point up until the root inode 1610B and 1612B is written.
Immediately after the root inode 1610B and 1612B is written to disk, the file
system 1670 reflects a new consistency point. Data structures of the file system
1670 can be updated in any order, and there are no ordering constraints on disk
writes except the one requirement that all blocks in the file system 1670 must

be written to disk before the root inode 1610B and 1612B is updated.

NSDOCID: <WO___9420807A1_1_>

10

15

20

WO 94/29807 . PCT/US94/06320

-27-

To convert to a new consistency point, the root inode 1610B and 1612B
must be updated reliably and atomically. WAFL does this by keeping two
identical copies of the fsinfo structure 1610 and 1612 containing the root inode
1610B and 1612B. During updating of the root inode 1610B and 1612B, a first
copy of the fsinfo structure 1610 is written to disk, and then the second copy of
the fsinfo structure 1612 is written. A checksum 1610C and 1612C in the fsinfo
structure 1610 and 1612, respectively, is used to detect the occurrence of a
system crash that corrupts one of the copies of the fsinfo structure 1610 or 1612,
each containing a copy of the root inode, as it is being written to disk.

Normally, the two fsinfo structures 1610 and 1612 are identical.

Algorithm for Generating a Consistency Point

Figure 5 is a diagram illustrating the method of producing a consistency
point. In step 510, all "dirty” inodes (inodes that point to new blocks
containing modified data) in the system are marked as being in the consistency
point their contents, and only their contents, are written to disk. Only when
those writes are complete are any writes from other inodes allowed to reach
disk. Further, during the time dirty writes are occurring, no new

modifications can be made to inodes that are in the consistency point.

In addition to setting the consistency point flag for all dirty inodes that
are part of the consistency point, a global consistency point flag is set so that |
user-requested changes behave in a tightly controlled manner. Once the
global consistency point flag is set, user-requested changes are not allowed fo
affect inodes that are in the consistency point. Further, only inodes having a

consistency point flag that is set are allocated disk space for their dirty biocks.

BNSDOCID: <WO___9429807A1_|_>

10

15

20

WO 94/29807 PCT/US94/06320

-28 -

Consequently, the state of the file system will be flushed to disk exactly as it

was when the consistency point began.

In step 520, regular files are flushed to disk. Flushing regular files
comprises the steps of allocating disk space for dirty blocks in the regular files,
and writing the corresponding WAFL buffers to disk. The inodes themselves
are then flushed (copied) to the inode file. All inodes that need to be written
are in either the list of inodes having dirty buffers or the list of inodes that are
dirty but do not have dirty buffers. When step 520 is completed, there are no
more ordinary inodes in the consistency point, and all incoming 1/O requests
succeed unless the requests use buffers that are still locked up for disk I/O

operations.

In step 530, spedial files are flushed to disk. Flushing special files
comprises the steps of allocating disk space for dirty blocks in the two special
files: the inode file and the blkmap file, updating the consistency bit (CP-bit) to
match the active file system bit (FS-bit) for each entry in the blkmap file, and
then writing the blocks to disk. Write allocating the inode file and the blkmap ’
is complicated because the process of write allocating them changes the files
themselves. Thus, in step 530 writes are disabled while changing these files to
prevent important blocks from locking up in disk 1/O operations before the

changes are completed.

Also, in step 530, the creation and deletion of snapshots, described
below, are performed because it is the only point in time when the file system,
except for the fsinfo block, is completely self consistent and about to be written
to disk. A snapshot is deleted from the file system before a new one is created

so that the same snapshot inode can be used in one pass.

INSDOCID: <WO___5429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-29 .

Figure 6 is a flow diagram illustrating the steps that step 530 comprises.
Step 530 allocates disk space for the blkmap file and the inode file and copies
the active FS-bit into the CP-bit for each entry in the blkmap file. In step 610,
the inode for the blkmap file is pre-flushed to the inode file. This ensures that
the block in the inode file that contains the inode of the blkmap file is dirty so
that step 620 allocates disk space for it.

In step 620, disk space is allocated for all dirty blocks in the inode and
blkmap files. The dirty blocks include the block in the inode file containing
the inode of the blkmap file is dirty.

In step 630, the inode for the blkmap file is flushed again, however this
time the actual inode is written to the pre-flushed block in the inode file. Step
610 has already dirtied the block of the inode file that contains the inode of the
blkmap file. Thus, another write-allocate, as in step 620, does not need to be"
scheduled.

In step 640, the entries for each block in the blkmap file are updated.
Each entry is updated by copying the active FS-bit to the CP-bit (i.e., copying
bit 0 into bit 31) for all entries in dirty blocks in the blkmap file.

In step 650, all dirty blocks in the blkmap and inode files are written to
disk. '

Only entries in dirty blocks of the blkmap file need to have the active
file system bit (FS-bit) copied to the consistency point bit (CP-bit) in step 640.

Immediately after a consistency point, all blkmap entries have same value for

BNSDOCID: <WO__8429807A1_|_>

10

15

20

WO 94/29807 PCT/US%4/06320

-30-

both the active FS-bit and CP-bit. As time progresses, some active FS-bits of
blkmap file entries for the file system are either cleared or set. The blocks of
the blkmap file containing the changed FS-bits are accordingly marked dirty.
During the following consistency point, blocks that are clean do not need to be
re-copied. The clean blocks are not copied because they were not dirty at the
previous consistency point and nothing in the blocks has changed since then.
Thus, as long as the file system is initially created with the active FS-bit and the
CP-bit having the same value in all blkmap entries, only entries with dirty

blocks need to be updated at each consistency point.

Referring to Figure 5, in step 540, the file system information (fsinfo)
block updated and then flushed to disk. The fsinfo block is updated by writing
a new root inode for the inode file into it. The fsinfo block is written twice. It
is first written to one location and then to a second location. The two writes
are performed so that when a system crash occurs during either write, a
self-consistent file system exists on disk. Therefore, either the new consistency
point is available if the system crashed while writing the second fsinfo block or
the previous consistency point (on disk before the recent consistency point
began) is available if the first fsinfo block failed. When the file system is
restarted after a system failure, the highest generation count for a consistency
point in the fsinfo blocks having a correct checksum value is used. This is
described in detail below.

In step 550, the consistency point is completed. This requires that any
dirty inodes that were delayed because they were not part of the consistency
point be requeued. Any inodes that had their state change during the
consistency point are in the consistency point wait (CP_WAIT) queue. The
CP_WAIT queue holds inodes that changed before step 540 completed, but

NSDOCID: <WO___9429807A1_1_>

10

15

20

WO 94/29807 PCT/US94/06320

-31-
after step 510 when the consistency point started. Once the consistency point is
completed, the inodes in the CP_WAIT queue are re-queued accordingly in the
regular list of inodes with dirty buffers and list of dirty inodes without dirty

buffers.

Single Ordering Constraint of Consistency Point

The present invention, as illustrated in Figures 20A-20C, has a single
ordering constraint. The single ordering constraint is that the fsinfo block 1810
is written to disk only after all the other blocks are written to disk. The writing
of the fsinfo block 1810 is atomic, otherwise the entire file systermn 1830 could be
lost. Thus, the WAFL file system requires the fsinfo block 1810 to be written at
once and not be in an inconsistent state. As illustrated in Figure 15, each of
the fsinfo blocks 1810 (1510) contains a checksum 1510C and a generation count
1510D.

Figure 20A illustrates the updating of the generation count 1810D and
1870D of fsinfo blocks 1810 and 1870. Each time a consistency point (or
snapshot) is performed, the generation count of the fsinfo block is updated.
Figure 20A illustrates two fsinfo blocks 1810 and 1870 having generation
counts 1810D and 1870D, respectively, that have the same value of N
indicating a consistency point for the file system. Both fsinfo blocks reference
the previous consistency point (old file system on disk) 1830. A new version of
the file system exists on disk and is referred to as new consistency point 1831.

The generation count is incremented every consistency point.

In Figure 20B, the generation count 1810D of the first fsinfo block 1810 is
updated and given a value of N+1. It is then written to disk. Figure 20B

BNSDOCID: <WO___0420807A1_|_>

10

15

20

WO 94/29807 PCT/US94/06320

-32-

illustrates a value of N+1 for generation count 1810D of fsinfo block 1810
whereas the generation count 1870D of the second fsinfo block 1870 has a value
of N. Fsinfo block 1810 references new consistency point 1831 whereas fsinfo
block 1870 references old consistency point 1830. Next, the generation count
1870D of fsinfo block 1870 is updated and written to disk as illustrated in Figure
20C. In Figure 20C, the generation count 1870D of fsinfo block 1870 has a value
of N+1. Therefore the two fsinfo blocks 1810 and 1870 have the same

generation count value of N+1.

When a system crash occurs between fsinfo block updates, each copy of
the fsinfo block 1810 and 1870 will have a self consistent checksum (not shown
in the diagram), but one of the generation numbers 1810D or 1870D will have a
higher value. A system crash occurs when the file system is in the state
illustrated in Figure 20B. For example, in the preferred embodiment of the
present invention as illustrated in Figure 20B, the generation count 1810D of
fsinfo block 1810 is updated before the second fsinfo block 1870. Therefore, the
generation count 1810D (value of one) is greater than the generation count
1870D of fsinfo block 1870. Because the generation count of the first fsinfo
block 1810 is higher, it is selected for recovering the file system after a system
crash. This is done because the first fsinfo block 1810 contains more current
data as indicated by its generation count 1810D. For the case when the first
fsinfo block is corrupted because the system crashes while it is being updated,
the other copy 1870 of the fsinfo block is used to recover the file system 1830

into a consistent state.

It is not possible for both fsinfo blocks 1810 and 1870 to be updated at the

same time in the present invention. Therefore, at least one good copy of the

INSDOCID: <WO___9429807A1_I_>

[SR

WO 94/29807 PCT/US94/06320

10

15

20

-33-

fsinfo block 1810 and 1870 exists in the file system. This allows the file system

to alsways be recovered into a consistent state.

WAFL does not require special recovery procedures. This is unlike
prior art systems that use logging, ordered writes, and mostly ordered writes
with recovery. This is because only data corruption, which RAID protects
against, or software can corrupt a WAFL file system. To avoid losing data
when the system fails, WAFL may keep a non-volatile transaction log of all
operations that have occurred since the most recent consistency point. This
log is complétely independent of the WAFL disk format and is required only to

prevent operations from being lost during a system crash. However, it is not

required to maintain consistency of the file system.

Generating A Consistency Point

- As described above, changes to the WAFL file system are tightly
controlled to maintain the file system in a consistent state. Figures 17A-17H

illustrate the generation of a consistency point for a WAFL file system. The

generation of a consistericy point is described with reference to Figures 5 and 6.

In Figures 17A-17L, buffers that have not been modified do not have
asterisks beside them. Therefore, buffers contain the same data as
corresponding on-disk blocks. Thus, a block may be loaded into memory but it
has not changed with respect to its on disk version. A buffer with a single
asterisk (*) beside it indicates a dirty buffer in memory (its data is modified). A
buffer with a double asterisk (**) beside it indicates a dirty buffer that has been
allocated disk space. Finally, a buffer with a triple asterisk (***) is a dirty buffer

BNSDOCID: <WO___5429807A1_|_>

10

15

20

WO 94/29807 PCT/US94/06320

-34-
that is written into a new block on disk. This convention for denoting the

state of buffers is also used with respect to Figures 21A-21E.

Figure 17A illustrates a list 2390 of inodes with dirty buffers comprising
inodes 2306A and 2306B. Inodes 2306A and 2306B reference trees of buffers
where at least one buffer of each tree has been modified. Initially, the
consistency point flags 2391 and 2392 of inodes 2306A and 2306B are cleared (0).
While a list 2390 of inodes with dirty buffers is illustrated for the present
system, it should be obvious to a person skilled in the art that other lists of
inodes may exist in memory. For instance, a list of inodes that are dirty but do
not have dirty buffers is maintained in memory. These inodes must also be
marked as being in the consistency point. They must be flushed to disk also to
write the dirty contents of the inode file to disk even though the dirty inodes
do not reference dirty blocks. This is done in step 520 of Figure 5.

Figure 17B is a diagram illustrating a WAFL file system of a previous -
consistency point comprising fsinfo block 2302, inode file 2346, blkmap file 2344
and files 2340 and 2342. File 2340 comprises blocks 2310-2314 containing data
"A", "B", and "C", respectively. File 2342 comprises data blocks 2316-2320
comprising data "D", "E", and "F", respectively. Blkmap file 2344 comprises
block 2324. The inode file 2346 comprises two 4KB blocks 2304 and 2306. The
second block 2306 comprises inodes 2306A-2306C that reference file 2340, file
2342, and blkmap file 2344, respectively. This is illustrated in block 2306 by
listing the file number in the inode. Fsinfo block 2302 comprises the root
inode. The root inode references blocks 2304 and 2306 of inode file 2346. Thus,
Figure 17B illustrates a tree of buffers in a file system rooted by the fsinfo block

2302 containing the root inode.

NSDOCID: <WO__9429807A1_|_>

|

10

15

20

WO 94/29807 PCT/US94/06320

-35-

Figure 17C is a diagram illustrating two modified buffers for blocks 2314
and 2322 in memory. The active filg system is modified so that the block 2314
containing data "C" is deleted from file 2340. Also, the data "F" stored in block
2320 is modified to "F-prime”, and is stored in a buffer for disk block 2322. It
should be understood that the modified data contained in buffers for disk
blocks 2314 and 2322 exists only in memory at this time. All other blocks in the
active file system in Figure 17C are not modified, and therefore have no
asterisks beside them. However, some or all of these blocks may have

corresponding clean buffers in memory.

Figure 17D is a diagram illustrating the entries 2324A-2324M of the
blkmap file 2344 in memory. Entries 2324A-2324M are contained in a buffer for
4 KB block 2324 of blkmap file 2344. As described previously, BITO and BIT31
are the FS-BIT and CP-BIT, respectively. The consistency point bit (CP-BIT) is
set during a consistency point to ensure that the corresponding block is not
modified once a consistency point has begun, but not finished. BIT1 is the first
snapshot bit (described below). Blkmap entries 2324A and 2324B illustrate that,
as shown in Figure 17B, the 4 KB blocks 2304 and 2306 of inode file 2346 are in
the active file system (FS-BIT equal to 1) and in the consistency point (CP-BIT
equal to 1). Similarly, the other blocks 2310-2312 and 2316-2320 and 2324 are in
the active file system and in the consistency point. However, blocks 2308, 2322,
and 2326-2328 are neither in the active file system nor in the consistency point
(as indicated by BITO and BIT31, respectively). The entry for deleted block 2314
has a value of 0 in the FS-BIT indicating that it has been removed from the

active file system.

In step 510 of Figure 5, all "dirty” inodes in the system are marked as

being in the consistency point. Dirty inodes include both inodes that are dirty

BNSDOCID: <WO___9426807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-36-

and inodes that reference dirty buffers. Figure 171 illustrates a list of inodes
with dirty buffers where the consistency point flags 2391 and 2392 of inodes
2306A and 2306B are set (1). Inode 2306A references block 2314 containing data
"C" of file 2340 which is to be deleted from the active file system. Inode 2306B
of block 2306 of inode file 2346 references file 2342. Block 2320 containing data
"F" has been modified and a new block containing data "F" must be allocated.
In step 510, the dirty inodes 2306A and 2306B are copied into the buffer for
block 2308. The buffer for block 2306 is subsequently written to disk (in step
530). This is illustrated in Figure 17E. The modified data exists in memory
only, and the buffer 2308 is marked dirty. The inconsistency point flags 2391
and 2392 of inodes 2306A and 2306B are then cleared (0) as illustrated in Figure

17A. This releases the inodes for use by other processes.

In step 520, regular files are flushed to disk. Thus, block 2322 is allocated
disk space. Block 2314 of file 2340 is to be deleted, therefore nothing occurs to
this block until the consistency point is subsequently completed. Block 2322 is
written to disk in step 520. This is illustrated in Figure 17F where buffers for
blocks 2322 and 2314 have been written to disk (marked by ***). The
intermediate allocation of disk space (**) is not shown. The inodes 2308A and
2308B of block 2308 of inode file 2346 are flushed to the inode file. Inode 2308A
of block 2308 references blocks 2310 and 2312 of file 2346. Inode 2308B
references blocks 2316, 2318, 2322 for file 2342. As illustrated in Figure 17F, disk
space is allocated for block 2308 of inode 2346 and for direct block 2322 for file
2342. However, the file system itself has not been updated. Thus, the file

system remains in a consistent state.

In step 530, the blkmap file 2344 is flushed to disk. This is illustrated in

Figure 17G where the blkmap file 2344 is indicated as being dirty by the asterisk.

INSDOCID: <WO___0429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-37-

In step 610 of Figure 6, the inode for the blkmap file is pre-flushed to the
inode file as illustrated in Figure 17H. Inode 2308C has been flushed to block
230B of inode file 2346. However, inode 2308C still references block 2324. In
step 620, disk space is allocated for blkn;ap file 2344 and inode file 2346. Block
2308 is allocated for inode file 2346 and block 2326 is allocated for blkmap file
2344. As described above, block 2308 of inode file 2346 contains a pre-flushed
inode 2308C for blkmap file 2344. In step 630, the inode for the blkmap file 2344
is written to the pre-flushed block 2308C in inode 2346. Thus, incore inode
2308C is updated. to reference block 2324 in step 620, and is copied into the
buffer in memory containing block 2306 that is to be written to block 2308. This
is illustrated in Figure 17H where inode 2308C references block 2326.

In step 640, the entries 2326A-2326L for each block 2304-2326 in the
blkmap file 2344 are updated in Figure 17]. Blocks that have not changed since
the consistency point began in Figure 17B have the same values in their
entries. The entries are updated by copying BITO (FS-bit) to the consistency
point bit (BIT31). Block 2306 is not part of the active file system, therefore BITO
is equal to zero (BITO was turned off in step 620 when block 2308 was allocated
to hold the new data for that part of the inode file). This is illustrated in Figure
17] for entry 2326B. Similarly, entry 2326F for block 2314 of file 2340 has BITO
and BIT31 equal to zero. Block 2320 of file 2342 and block 2324 of blkmap file
2344 are handled similarly as shown in entries 2361 and 2326K, respectively. In
step 650, dirty block 2308 of inode file 2346 and dirty block 2326 of blkmap file
2344 are written to disk. This is indicated in Figure 17K by a triple asterisk (***)
beside blocks 2308 and 2326.

BNSDOCID: <WO____8429807A1_|_>

10

15

20

WO 94/29807 PCT/US%4/06320

-38-

Referring to Figure 5, in step 540, the file system information block 2302
is flushed to disk, this is performed twice. Thus, fsinfo block 2302 is dirtied and
then written to disk (indicated by a triple asterisk) in Figure 17L. In Figure 17L,
a single fsinfo block 2302 is illustrated. As shown in the diagram, fsinfo block
2302 now references block 2304 and 2308 of the inode file 2346. In Figure 17L,
block 2306 is no longer part of the inode file 2346 in the active file system.
Similarly, file 2340 referenced by inode 2308A of inode file 2346 comprises
blocks 2310 and 2312. Block 2314 is no longer part of file 2340 in this
consistency point. File 2342 comprises blocks 2316, 2318, and 2322 in the new
consistency point.whereas block 2320 is not part of file 2342. Further, block
2308 of inode file 2346 references a new blkmap file 2344 comprising block 2326.

As shown in Figure 17L, in a consistency point, the active file system is
updated by copying the inode of the inode file 2346 into fsinfo block 2302.
However, the blocks 2314, 2320, 2324, and 2306 of the previous consistency
point remain on disk. These blocks are never overwritten when updating the
file system to ensure that both the old consistency point 1830 and the new
consistency point 1831 exist on disk in Figure 20 during step 540

SNAPSHOTS

The WAFL system supports snapshots. A snapshot is a read-only copy
of an entire file system at a given instant when the snapshot is created. A
newly created snapshot refers to exactly the same disk blocks as the active file
system does. Therefore, it is created in a small period of time and does not
consume any additional disk space. Only as data blocks in the active file
system are modified and written to new locations on disk does the snapshot

begin to consume extra space.

NSDOCID: <WO___9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-39-

WAFL supports up to 20 different snapshots that are numbered 1
through 20. Thus, WAFL allows the creation of multiple "clones" bf the same
file system. Each snapshot is represented by a snapshot inode that is similar to
the representation of the active file system by a root inode. Snapshots are
created by duplicating the root data structure of the file system. In the
preferred embodiment, the root data structure is the root inode. However, any
data structure representétive of an entire file system could be used. The
snapshot inodes reside in a fixed location in the inode file. The limit of 20
snapshots is imposed by the size of the blkmap entries. WAFL requires two
steps to create a new snapshot N: copy the root inode into the inode for
snapshot N; and, copy bit O into bit N of each blkmap entry in the blkmap file.
Bit 0 indicates the blocks that are referenced by the tree beneath the root inode.

The result is a new file system tree rooted by snapshot inode N that
references exactly the same disk blocks as the root inode. Setting a
corresponding bit in the blkmap for each block in the snapshot prevents
snapshot blocks from being freed even if the active file no longer uses the
snapshot blocks. Because WAFL always writes new data to unused disk
locations, the snapshot tree does not change even though the active file system
changes. Becéuse a newly created snapshot tree references exactly the same
blocks as the root inode, it consumes no additional disk space. Over time, the
snapshot references disk blocks that would otherwise have been freed. Thus,
over time the snapshot and the active file system share fewer and fewer blocks,
and the space consumed by the snapshot increases. Snapshots can be deleted

when they consume unacceptable numbers of disk blocks.

BNSDOCID: <WO___9429807A1_I_>

WO 94/29807 PCT/US94/06320

10

15

20

-40 -
The list of active snapshots along with the names of the snapshots is
stored in a meta-data file called the snapshot directory. The disk state is
updated as described above. As with all other changes, the update occurs by
automatically advancing from one consistency point to another. Modified
blocks are written to unused locations on the disk after which a new root inode

describing the updated file system is written.

Overview of Snapshots

Figure 18A is a diagram of the file system 1830, before a snapshot is
taken, where levels of indirection have been removed to provide a simpler
overview of the WAFL file system. The file system 1830 represents the file
system 1690 of Figure 16. The file system 1830 is comprised of blocks 1812-1820.
The inode of the inode file is contained in fsinfo block 1810. While a single
copy of the fsinfo block 1810 is shown in Figure 184, it should be understood
that a second copy of fsinfo block exists on disk. The inode 1810A contained in
the fsinfo block 1810 comprises 16 pointers that point to 16 blocks having the
same level of indirection. The blocks 1812-1820 in Figure 18A represent all
blocks in the file system 1830 including direct blocks, indirect blocks, etc.
Though only five blocks 1812-1820 are shown, each block may point to other
blocks. '

Figure 18B is a diagram illustrating the creation of a snapshot. The
snapshot is made for the entire file system 1830 by simply copying the inode
1810A of the inode file that is stored in fsinfo block 1810 into the snapshot
inode 1822. By copying the inode 1810A of the inode file, a new file of inodes is
created representing the same file system as the active file system. Because the

inode 1810A of the inode file itself is copied. No other blocks 1812-1820 need to

NSDOCID: <WO___9426807A1_I_>

WO 94/29807 PCT/US94/06320

10

15

20

-41 -

be duplicated. The copied inode or snapshot inode 1822, is then copied into the
inode file that dirties a block in the inode file. For an inode file comprised of
one or more levels of indirection, each indirect block is in turn dirtied. This
process of dirtying blocks propagates tﬁrough all the levels of indirection. Each
4 KB block in the inode file on disk contains 32 inodes where each inode is 128
bytes long.

The new snapshot inode 1822 of figure 18B points back to the highest
level of indirection blocks 1812-1820 referenced by the inode 1810A of the inode
file when the snapshot 1822 was taken. The inode file itself is a recursive
structure because it contains snapshots of the file system 1830. Each snapshot
1822 is a copy of the inode 1810A of the inode file that is copied into the inode
file.

Figure 18C is a diagram illuStrating the active file system 1830 and a
snapshot 1822 when a change to the active file system 1830 subsequently occurs
after the snapshot 1822 is taken. As illustrated in the diagram, block 1818
comprising data “D” is modified after the snapshot was taken (in Figure 18B),
and therefore a new block 1824 containing data ”Dp,—ime" is allocated for the
active file system 1830. Thus, the active file system 1830 comprises blocks 1812-
1816 and 1820-1824 but does not contain block 1818 containing data “D”.
However, block 1818 containing data “D” is not overwritten because the WAFL
system does not overwrite blocks on disk. The block 1818 is protected against |
being overwritten by a snapshot bit that is set in the blkmap entry for block
1818. Therefore, the snapshot 1822 still points to the unmodified block 1818 as
well as blocks 1812-1816 and 1820. The present invention, as illustrated in
Figures 18A-18C, is unlike prior art systems that create “clones” of a file system

where a clone is a copy of all the blocks of an inode file on disk. Thus, the

BNSDOCID: <WO___9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-42 -

entire contents of the prior art inode files are duplicated requiring large
amounts (MB) of disk space as well as requiring substantial time for disk 1/0O

operations.

As the active file system 1830 is modified in Figure 18C, it uses more
disk space because the file system comprising blocks 1812-1820 is not
overwritten. In Figure 18C, block 1818 is illustrated as a direct block. However,
in an actual file system, block 1818 may be pointed to by indirect block as well.
Thus, when block 1818 is modified and stored in a new disk location as block
1824, the corresponding direct and indirect blocks are also copied and assigned
to the active file system 1830.

Figure 19 is a diagram illustrating the changes occurring in block 1824 of
Figure 18C. Block 1824 of Figure 18C is represented within dotted line 1824 in
Figure 19. Figure 19 illustrates several levels of indirection for block 1824 of
Figure 18C. The new block 1910 that is written to disk in Figure 18C is labeled
1910 in Figure 19. Because block 1824 comprises a data block 1910 containing
modified data that is referenced by double indirection, two other blocks 1918
and 1926 are also modified. The pointer 1924 of single-indirect block 1918
references new block 1910, therefore block 1918 must also be written to disk in a
new location. Similarly, pointer 1928 of indirect block 1926 is modified because
it points to block 1918. Therefore, as shown in Figure 19, modifying a data
block 1910 can cause several indirect blocks 1918 and 1926 to be modified as
well. This requires blocks 1918 and 1926 to be written to disk in a new location

as well.

Because the direct and indirect blocks 1910, 1918 and 1926 of data block

1824 of Figure 18C have changed and been written to a new location, the inode

NSDOCID: <WO___9429807A1__>

10

15

20

WO 94/29807 PCT/US94/06320

-43 -

in the inode file is written to a new block. The modified block of the inode file

is allocated a new block on disk since data cannot be overwritten.

As shown in Figure 19, block 1910 is pointed to by indirect blocks 1926
and 1918, respectively. Thus when block 1910 is modified and stored in a new
disk location, the corresponding direct and indirect blocks are also copied and
assigned to the active file system. Thus, a number of data structures must be
updated. Changing direct block 1910 and indirection blocks 1918 and 1926
causes the blkmap file to be modified.

The key data structures for snapshots are the blkmap entries where each
entry has multiple bits for a snapshot. This enables a plurality of snapshots to
be created. A snapshot is a picture of a tree of blocks that is the file system (1830
of Figure 18). As long as new data is not written onto blocks of the snapshot,
the file system represented by the snapshot is not changed. A snapshot is

similar to a consistency point.

The file system of the present invention is completely consistent as of
the last time the fsinfo blocks 1810 and 1870 were written. Therefore, if power
is interrupted to the system, upon restart the file system 1830 comes up in a
consistent state. Because 8-32 MB of disk space are used in typical prior art
“clone” of a 1 GB file system, clones are not conducive to consistency points or

snapshots as is the present invention.

Referring to Figure 22, two previous snapshots 2110A and 2110B exist on
disk. At the instant when a third snapshot is created, the root inode pointing
to the active file system is copied into the inode entry 2110C for the third

snapshot in the inode file 2110. At the same time in the consistency point that

BNSDOCID: <WQO___9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-44 -

goes through, a flag indicates that snapshot 3 has been created. The entire file
system is processed by checking if BITO for each entry in the blkmap file is set
(1) or cleared (0). All the BITO values for each blkmap entry are copied into the
plane for snapshot three. When completed, every active block 2110-2116 and

1207 in the file system is in the snapshot at the instant it is taken.

Blocks that have existed on disk continuously for a given length of time
are also present in corresponding snapshots 2110A-2110B preceding the third
snapshot 2110C. If a block has been in the file system for a long enough period
of time, it is present in all the snapshots. Block 1207 is such a block. As shown
in Figure 22, block 1207 is referenced by inode 2210G of the active inode file,
and-indirectly by snapshots 1, 2 and 3.

The sequential order of snapshots does not necessarily represent a
chronological sequence of file system copies. Each individual snapshot in a file
system can be deleted at any given time, thereby making an entry available for
subsequent use. When BITO of a blkmap entry that references the active file
system is cleared (indicating the block has been deleted from the active file
system), the block cannot be reused if any of the snapshot reference bits are set.
This is because the block is part of a snapshot that is still in use. A block can

only be reused when all the bits in the blkmap entry are set to zero.

Algorithm for Generating a Snapshot

Creating a snapshot is almost exactly like creating a regular consistency
point as shown in Figure 5. In step 510, all dirty inodes are marked as being in
the consistency point. In step 520, all regular files are flushed to disk. In step
530, special files (i.e., the inode file and the blkmap file) are flushed to disk. In

NSDOCID: <WO___9429807A1_I_>

WO 94/29807 PCT/US94/06320

10

15

20

-45 -

step 540, the fsinfo blocks are flushed to disk. In step 550, all inodes that were
not in the consistency point are processed. Figure 5 is described above in detail.
In fact, creating a snapshot is done as part of creating a consistency point. The
primary difference between creating a snapshot and a consistency point is that
all entries of the blkmap file have the active FS-bit copied into the snapshot bit.
The snapshot bit represents the corresponding snapshot in order to protect the
blocks in the snapshot from being overwritten. The creation and deletion of
snapshot is performed in step 530 because that is the only point where the file

system is completely self-consistent and about to go to disk.

Different steps are performed in step 530 then illustrated in Figure 6 for
a consistency point when a new snapshot is created. The steps are very similar
to those for a regular consistency point. Figure 7 is a how diagram illustrating
the steps that step 530 comprises for creating a snapshot. As described above,
step 530 allocates disk space for the blkmap file and the inode file and copies
the active FS-bit into the snapshot bit that represents the corresponding

snapshot in order to protect the blocks in the snapshot from being overwritten.

In step 710, the inodes of the blkmap file and the snapshot being created
are pre-flushed to disk. In addition to flushing the inode of the blkmap file to
a block of the inode file (as in step 610 of Figure 6 for a consistency point), the
inode of the snapshot being created is also flushed to a block of the inode file.
This ensures that the block of the inode file containing the inode of the
snapshot is dirty.

In step 720, every block in the blkmap file is dirtied. In step 760
(described below), all entries in the blkmap file are updated instead of just the

BNSDOCID: <WO___9429807A1_|_>

WO 94/29807 PCT/US94/06320

10

15

20

-46-

entries in dirty blocks. Thus, all blocks of the blkmap file must be marked dirty

here to ensure that step 730 write-allocates disk space for them.

In step 730, disk space is allocated for all dirty blocks in the inode and
blkmap files. The dirty blocks include the block in the inode file containing
the inode of the blkmap file, which is dirty, and the block containing the inode

for the new snapshot.

In step 740, the contents of the root inode for the file system are copied
into the inode of the snapshot in the inode file. At this time, every block that
is part of the new consistency point and that will be written to disk has disk
space allocated for it. Thus, duplicating the root inode in the snapshot inode
effectively copies the entire active file system. The actual blocks that will be in

the snapshot are the same blocks of the active file system.

In step 750, the inodes of the blkmap file and the snapshot are copied to

into the inode file.

In step 760, entries in the blkmap file are updated. In addition to
copying the active FS-bit to the CP-bit for the entries, the active FS-bit is also

copied to the snapshot bit corresponding to the new snapshot.

In step 770, all dirty blocks in the blkmap and inode files are written to
disk.

Finally, at some time, snapshots themselves are removed from the file
system in step 760. A snapshot is removed from the file system by clearing its

snapshot inode entry in the inode file of the active file system and clearing

INSDOCID: <WO___9420807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-47 -

each bit corresponding to the snapshot number in every entry in the blkmap
file. A count is performed also of each bit for the snapshot in all the blkmap
entries that ére cleared from a set value, thereby providing a count of the
blocks that are freed (corresponding amount of disk space that is freed) by
deleting the snapshot. The system decides which snapshot to delete on the
basis of the oldest snapshots. Users can also choose to delete specified

snapshots manually.

The present invention limits the total number of snapshots and keeps a
blkmap file that-has entries with multiple bits for tracking the snapshots
instead of using pointers having a COW bit as in Episode. An unused block
has all zeroes for the bits in its blkmap file entry. Over time, the BITO for the
active file system is usually turned on at some instant. Setting BITO identifies
the corresponding block as allocated in the active file system. As indicated
above, all snapshot bits are initially set to zero. If the active file bit is deared
before any snapshot bits are set, the block is not present in any snapshot stored
on disk. Therefore, the block is immediately available for reallocation and

cannot be recovered subsequently from a snapshot.

Generation of a Snapshot

As described previously, a snapshot is very similar to a consistency
point. Therefore, generation of a snapshot is described with reference to the
differences between it and the generation of a consistency point shown in
Figures 17A-17L. Figures 21A-21TF illustrates the differences for generating a

snapshot.

BNSDOCID: <WO___9428807A1_|_>

WO 94/29807 PCT/US94/06320

10

15

20

-48-

Figures 17A-17D illustrate the state of the WAFL file system when a
snapshot is begun. All dirty inodes are marked as being in the consistency
point in step 510 and regular files are flushed to disk in step 520. Thus, initial
processing of a snapshot is identical to that for a consistency point. Processing
for a snapshot differs in step 530 from that for a consistency point. The

following describes processing of a snapshot according to Figure 7.

The following description is for a second snapshot of the WAFL file
system. A first snapshot is recorded in the blkmap entries of Figure 17C. As
indicated in entries 2324A-2324M, blocks 2304-2306, 2310-2320, and 2324 are
contained in the first snapshot. All other snapshot bits (BIT1-BIT20) are
assumed to have values of 0 indicating that a corresponding snapshot does not
exist on disk. Figure 21A illustrates the file system after steps 510 and 520 are

completed.

In step 710, inodes 2308C and 2308D of snapshot 2 and blkmap file 2344
are pre-flushed to disk. This ensures that the block of the inode file that is
going to contain the snapshot 2 inode is dirty. In Figure 21B, inodes 2308C and
2308D are pre-flushed for snapshot 2 and for blkmap file 2344.

In step 720, the entire blkmap file 2344 is dirtied. This will cause the
entire blkmap file 2344 to be allocated disk space in step 730. In step 730, disk
space is allocated for dirty blocks 2308 and 2326 for inode file 2346 and blkmap
file 2344 as shown in Figure 21C. This is indicated by a triple asterisk (***)
beside blocks 2308 and 2326. This is different from generating a consistency
point where disk space is allocated only for blocks having entries that have
changed in the blkmap file 2344 in step 6'20 of Figure 6. Blkmap file 2344 of
Figure 21C comprises a single block 2324. However, when blkmap file 2344

INSDOCID: <WO___8426807A1_|_>

WO 94/29807 PCT/US94/06320

10

15

20

-49 -

comprises more than one block, disk space is allocated for all the blocks in step

730.

In step 740, the root inode for the new file system is copied into inode
2308D for snapshot 2. In step 750, the inodes 2308C and 2308D of blkmap file
2344 and snapshot 2 are flushed to disk as illustrated in Figure 21D. The
diagram illustrates that snapshot 2 inode 2308D references blocks 2304 and 2308
but not block 2306.

In step 760, entries 2326 A-2326L in block 2326 of the blkmap file 2344 are
updated as illustrated in Figure 21E. The diaéram illustrates that the snapshot
2 bit (BIT2) is updated as well as the FS-BIT and CP-BIT for eacﬂ entry
2326A-2326L. Thus, blocks 2304, 2308-2312, 2316-2318, 2322, and 2326 are
contained in snapshot 2 whereas blocks 2306, 2314, 2320, and 2324 are not. In
step 770, the dirty blocks 2308 and 2326 are written to disk.

Further processing of snapshot 2 is identical to that for generation of a
consiétency point illustrated in Figure 5. In step 540, the two fsinfo blocks are
flushed to disk. Thus, Figure 21F represents the WAFL file system in a
consistent state after this step. Files 2340, 2342, 2344, and 2346 of the consistent
file system, after step 540 is completed, are indicated within dotted lines in
Figure 21F. In step 550, the consistency point is completed by processing inodes

that were not in the consistency point.

BNSDOCID: <WO___9429807A1_I_>

10

15

20

WO 94/29807 PCT/US94/06320

-50-

Access Time Overwrites

Unix file systems must maintain an "access time" (atime) in each inode.
Atime indicates the last time that the file was read. It is updated every time
the file is accessed. Consequently, when a file is read the block that contains
the inode in the inode file is rewritten to update the ihode. This could be
disadvantageous for créating snapshots because, as a consequence, reading a
file could potentially use up disk space. Further, reading all the files in the file
system could cause the entire inode file to be duplicated. The present

invention solves. this problem.

Because of atime, a read could potentially consume disk space since
modifying an inode causes a new block for the inode file to written on disk.
Further, a read operation could potentially fail if a file system is full which is

an abnormal condition for a file system to have occur.

In general, data on disk is not overwritten in the WAFL file system so as
to protect data stored on disk. The only exception to this rule is atime
overwrites for an inode as illustrated in Figures 23A-23B. When an "atime
overwrites" occurs, the only data that is modified in a block of the inode file is
the atime of one or more of the inodes it contains and the block is rewritten in
the same location. This is the only exception in the WAFL system, otherwise

new data is always written to new disk locations.

In Figure 23A, the atimes 2423 and 2433 of an inode 2422 in an old
WAFL inode file block 2420 and the snapshot inode 2432 that references block
2420 are illustrated. Inode 2422 of block 2420 references direct block 2410. The
atime 2423 of inode 2422 is "4/30 9:15 PM" whereas the atime 2433 of snapshot

INSDOCID: <WO___9429807A1_I_>

WO 94/29807 PCT/US94/06320

-51-

inode 2432 is "5/1 10:00 AM". Figure 23A illustrates the file system before
direct buffer 2410 is accessed.

Figure 23B illustrates the inode 2422 of direct block 2410 after direct block
5 2410 has been accessed. As shown in the diagram, the access time 2423 of inode
2422 is overwritten with the access time 2433 of snapshot 2432 that references
it. Thus, the access time 2423 of inode 2422 for direct block 2410 is "5/1 11:23
AM".

10 Allowing inode file blocks to be overwritten with new atimes produces
a slight inconsistency in the snapshot. The atime of a file in a snapshot can
actually be later than the time that the snapshot was created. In order to
prevent users from detecting this inconsistency, WAFL adjusts the atime of all
files in a snapshot to the time when the snapshot was actually created instead

15 of the time a file was last accessed. This snapshot time is stored in the inode
that describes the snapshot as a whole. Thus, when accessed via the snapshot,
the access time 2423 for inode 2422 is always reported as "5/1 10:00AM". This
occurs both before the update when it may be expected to be "4/30 9:15PM", and
after the update when it may be expected to be "5/1 11:23AM". When accessed

20 through the active file system, the times are reported as "4/30 9:15PM" and
"5/1 11:23AM" before and after the update, respectively.

In this manner, a method is disclosed for maintaining a file system in a

consistent state and for creating read-only copies of the file system.

BNSDOCID: <WO___9420807A1_)_>

WO 94/29807 PCT/US94/06320

10

15

20

-52-

CLAIMS OF THE INVENTION

1. A method for generating a consistency point comprising the steps
of:

marking a plurality of inodes pointing to a plurality of modified blocks
in a file system as being in a consistency point;

flushing regular files to storage means;

flushing special files to said storage means;

flushing at least one block of file system information to said storage
means; and,

requeueing any dirty inodes that were not part of said consistency point.

2. The method of claim 1 wherein said step of flushing said special

files to said storage means further comprises the steps of:

pre-flushing an inode for a blockmap file to an inode file;

allocating space on said storage means for all dirty blocks in said inode
and said blockmap files;

flushing said inode for said blockmap file again;

updating a plurality of entries in said blockmap file wherein each entry
of said plurality of entries represents a block on said storage means; and,

writing all dirty blocks in said blockmap file and said inode file to said

storage means.

NSDOCID: <WO___9429807A1_I_>

WO 94/29807

1/39
ORIGINAL
1104 ANODE
1}
COW BIT~_

SET 0]

11087 \ INDIRECT
cow BIT 110 BLOCK
CLEARED

7
/2
[
1128
112
CLONE INDIRECT
1204 \ ANODE BLOCK
0}) /‘ 01
/_ 5 1224
1208 S /
120 122

FIG. T

PRIOR ART

SUBSTITUTE SHEET (RULE 26)

BNSDOCID; <WO___9429807A1_I_>

PCT/US94/06320

DATA

BLOCK

114

DATA
BLOCK

124
DATA

BLOCK

126

WO 94/29807

PCT/US94/06320
2/39
!
i WAFL INCORE _ 3712
| INODE 2048 2152 W,
E 222
| ™ 2507
! ~— 220
; (2152 . 2/878 -
!
1
! 2878 _- 3448
]
'; 3448 3712
5 2304 \- 2404
‘.
DIRTY INODE
ART 210 FIG. 2
) ON-DISK »
ON—DISK INFORMATION 310A
INODE INCLUDING OWNER,
PERMISSIONS,
- 0 ACCESS TIME, ETC.
16 BLOCK !
NUMBERS HAVING] .
SAME LEVEL OF . .
INDIRECTION 3108 \
i5

=310

MO0 WO, _52a807AL s SUBSTITUTE SHEET (RULE 26)

WO 94/29807

PCT/US94/06320

3/39
LEVEL O
INODE
. 3104
4-BYTES OF DATA
4-BYTES OF DATA| |
~ 64-BYTES
. > OF DATA
: 1 4108
410 —4=BYIES OF DATA
LEVEL 1 DATA
NODE BLOCK
3104 } 4 KBYTES
PTR 0 T
PTR 1 b—ou__ 4204
3108 ﬁ |
- - 4208
PR 15 . .
/ []
310
™~ 420C
SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO___9429807A1_I_>

WO 94/29807

N>

LEVEL
INODE

104

PIR O
PIR 1

3108 ﬁ

 __PIR_15

310

FIG. 4C

PCT/US94/06320

4/39
DATA
INDIRECT BLOCK
BLOCK } 4 K3
e = 4404
] ~— 4408
1023 —
/ ~~ 440C
4304
0
7
7023
/
4308
0
7
7023
>
430C

SUBSTITUTE SHEET (RULE 26)

NSDOCID: <WO___9429807A1_I_>

PCT/US94/06320

WO 94/29807

5/39

4067 ~

8087

JOLY

£201

£20!

J06¢

4067 —

206%

80L¥

£201

l

0

— V0.

X078
vIva

X014
1934I0N!
~719NIS

/

0

X078
193YI0NI
-718n04

- dv 9Ol
0lf
\ N
¢l uld
> 801§
I 4ld
0 dld
voIg
JAONI
N EIEl]

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO___9429807A1_1_>

WO 94/29807 PCT/US94/06320

6/39

INSDOCID: <WO___9429807A1_I_>

SUBSTITUTE SHEET (RULE 26)

UPDATE ENTRIES
IN BLKMAP
FILE

)

WRITE DIRTY
BLOCKS IN

BLKMAP AND

INODE FILES
70 DISK

MARK ALL "DIRTY”
510~ INODES AS IN
CONSISTENCY
POINT
- FLUSH
520" Rﬁ;%ﬁ’?
FLUSH
s3] - MEA-DATA
! 1o | PREUSH THE
! 7 INODE OF THE
FLUSH : ™
540~ FEINFD | BLKMAP FILE
BLOCK | 1
i WRITE-ALLOCATE
! DISK SPACE FOR
PROCESS INODES | 620"\ ALL DIRTY BLOCKS
THAT WERE NOT !
IN CONSISTENCY !)
POINT ! FLUSH THE
: INODE FOR THE
5 630" BLKMAP FILE
FIG. 5 |
|
]
\
]
1
]
t
:
A

-

WO 94/29807

BNSDOCID: <WO___9429807A1_)_>

PRE-FLUSH THE
INODES OF THE
BLKMAP FILE
AND THE
SNAPSHOT

DIRTY EVERY
BLOCK IN THE
BLKMAP FILE

WRITE-ALLOCATE
DISK SPACE FOR
ALL DIRTY BLOCKS

COPY ROOT
INODE OF FILE
SYSTEM INTO

SNAPSHOT INODE

750 =]

FLUSH THE
INODE FOR THE
BLKMAP FILE
AND SNAPSHOT

!

760 ~

UPDATE ENIRIES IN
BLKMAP FILE BY
COPYING FS-Bn
INTO CP-BIT AND
SNAPSHOT BIT

WRITE DIRTY
BLOCKS IN

BLKMAP AND

INODE FILES
70 DISK

————— . ——————— ——— T G ——— —— =

SUBSTITUTE SHEET (RULE 26)

PCT/US94/06320

WO 94/29807 PCT/US94/06320

8/39
| INCORE
ACOR INFORMATION 820C
INODE' INCLUDING DIRTY FLAG,
IN—CP FLAG, LINKED
WAFL BUFFER LIST POINTER(S)
DATA STRUCTURE
8204 D
PR O
PR 1
16 POINTERS HAVING
SAME LEVEL OF -
INDIRECTION 8208 S
 FE
ON=-DISK
520~ INODE 310

INSDOCID: WO, 5425807AT_ Lo ' SUBSTITUTE SHEET (RULE 26)

WO 94/29807

9/39

PCTNUS94/06320

J104,
J108,
8204

64-BYTES
\- OF DATA
9208

FIG. 9A
LEVEL O
INODE
4-BYTES OF DATA
4-BYTES OF DATA
820 -1 4-BYTES OF DAIA
FIG. 9B
LEVEL 1
INODE
ﬂ%{:
3108,
8204
PIR O
PIR 1 ——
8208 4 .
[Pk 15 :
820

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO___9429807A1_I_>

DATA (DIRECT)

BUFFER

} 4 KBYTES

9224

~~ 9228

™~ 922C

WO 94/29807

3104,
3108,
820A

8208 <3 .

820

FIG. 9C

INSDOCID: <WO___9428807A1_I_>

10/39

PCT/US94/06320

DATA
INDIRECT BUFFER
BUFFER 4 KB
C ~= 9404
. 9408
7023 —
/ N~ 940C
9304
0
1
7023
. 7
* 9308
0
]
7073
930¢
SUBSTITUTE SHEET (RULE 26)

PCT/US94/06320

WO 94/29807

11/39

4066 ~

8086

£20!

J066 ~

0066 ~

2066 ~

Y1408
viva

414408
1934I0NI-F19NIS

J0L6

I

0

414404

19341ONI-378100

ae ‘old
028
/
Sl dld |
. w%%
] dld
0 ¥ld
voZ8
'q0t¢
YoIf
300NI
£

SUBSTITUTE SHEET (RULE 25)

BNSDOCID: <WO___9429807A1_1_>

»

PCT/MIS94/06320

WO 94/29807

12/39

r

llllllllllllll (— $£0!
.......... !
i

$30 \ T\
g v VIRV

|

............. C-g#0!]

e
......................... i}
|

|

Y3108 v\
8y v AR

[}

]

I 8200 |
.......................... .
|

|

|
434408 \ -l
gy v vog0l

|
............. Coam)
Sy24408 1M 050

193410

= b o o o

-

SYIERNN
X018

gy ¢

XSI0-NO #201 /

SYIINIOd
434408
1M-#c0!
8y ¥

JHNLINYLS
43448

JSNUINYLS
4344N8 T4

SY34408 1AM

1934I0N

SRS |

010}

XSIG-NO

SYIINIOd

434908 9!

FHNIINELS
434408 1M / J010}

) 80101
> NOLLVWSOINI

~
0w VL1

JFHOONI 14vM

SUBSTITUTE SHEET (RULE 26)

NSDOCID: <WO___9420807A1_I_>

WO 94/29807 PCT/US94/06320

’ BLKMAP
R - LHf
BLKMAP | L~ 11104
ENTRY | J:/)
111081
~~1110C
~ 17100
1110
) SNAPSHOT BITS (BIT 1 — BIT 20)
CP-BIT N 11104
4 Y
(BT 311 B30 1 BiF 291 BT 28] + -+« | BT 3 | B 2] B 11 B 0]
) Y ~ FS-BIT
UPPER 11 BITS (BIT 21 — BIT 31)
ARE RESERVED
11104
/
o T o 1T o T o J---1T 01 0 | 0 1 0 1
A\ J
Y
FREE BLOCK 0 110
11104
gro /
o [o T o1 o 1---1 0o | o0 | o0 | 1 1
N /
Y [}
BLOCK IN - FS-BIT

F/G. 7 7 D ACTIVE FILE SYSTEM

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO___ 9429807A1_I_>

WO 94/29807 PCT/US94/06320

14 /39
INODE
12104 ~ ALE 1210
INCORE 4
(ON=DISK)
INODE
820 (310)
12108 4 KB
\- BUFFER 1220
. (BLOCK)
12100
</
121001
120106~ | G 120
w
\—./—\
1201F ="
1410
14124 14128 /J
FIXED > 74
DIRECTORY
LENGTH{ {,j‘ﬂr POINTER o
ENmrj
1412 .
1414 ~]
VARIABLE
LENGTH “DIRECTORY._ABC”
ENTRY
1416 . > 14108
1418 = o] J

SUBSTITUTE SHEET (RULE 26)

NSDOCID: <WO___9429807A1_|_>

WO 94/29807 PCT/US94/06320

15/39
FIG. T13A NoMAP
FLE
13104 ~ 32 } 8-BITS
13108 5
1310 - 0
1310
1340 | : INODE
LILE
0 I
INOMAP g !
FLE : , ¢ kB
13504 ~_ - T Saoh . BLOCK
13508 = 2 S =)
. \\\
13408 ~_|
1350C g N
1350 S
1340C -
SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO__ 9428807A1_I_>

WO 94/29807

NSDOCID: <WO___0420807A1_1_>

PCT/US94/06320

16/39

FSINFO
BLOCK

1510C ~

CHECKSUM
GENERATION _COUNT . MISCELLANEOUS
DATA 15104

15100 =

. INODE OF
. | > INODE FILE
* 15108

50 FIG. 15

\ LIST 2390 OF
: INODES WITH

F/G. 7 7A ' DIRTY BUFFERS

r/-.?.3'.97 2392 ~_

LIST 2390 orf | '
INODES WITH

DIRTY BUFFERS . F / G. 7 7 /

SUBSTITUTE SHEET (RULE 26)

WO 94/29807

BNSDOCID: <WO___9429807A1_{_>

[e o e e e e e e e e e e v e o o = ——— =

1612 ~

— 16124

CHECKSUM

- 16128

INODE 16204

OF BLKMAP < -

FILE 1630

INODE 16208
OF INOMAP <
FILE 1640

INODE 1620C
OF ROOT
DIRECTORY <
1650 OF
FILE SYSTEM

PLURALITY
OF INODES
FOR FILES <
IN THE
FILE SYSTEM

INODE
HLE

1610

1612 3 LSINFO

FSINFO
?

MISCELLANEOUS

16108 - CHECKSUM

DATA 16104

INODE 16104 OF

INODE FILE 1620

1630

BLKMAP FILE

1640

INOMAP FILE

< 1650

ROOT _DIRECTORY

PCT/US94/06320

|- 16200

e e e ety

IYPICAL FILE !
OR_DIRECTORY,
}

SUBSTITUTE SHEET (RULE 26)

' FILE SYSTEM 1670
JF/

PCT/US94/06320

WO 94/29807

14214
Ji

e
dvynx1g L

7vez 314~

18/39

vigd

0rs¢ 371

NR.N_\

0152 |

L

[| oz
. 29052
s \&éﬁ
VA | —V90§C
E)
YA 100
%0078
ay b
L 206C yoom
9557 04NIS1

JU4 300N

SUBSTITUTE SHEET (RULE 26)

B4268B07A1_I_>

INSDOCID: <WO,

PCT/US94/06320

WO 94/29807

19/39

—

——

-

14474
7

N oz

dvix g L

|

N

0r§c .ﬁt\ﬁl
NNQ._\

Shm-_\

L]

/1 Ol

[J_\.%Q
: _\éﬁ

4414 89057

1A

$0sZ | |
X079
&y ||

L

97 m o
914 J00M

41,94

J00N!
1004

X018
04NIS1

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO___9420807A1_1_>

...

WO 94/29807 ' PCT/USY%4/06320

20/39
BIT 31 BT 1 BITO
(CP-BIT) (FS-BIT)
2304 ~7 T 7 1 ~2324A
2306 ~ 7 . .. 7 7 V23248
2308~ . .. 0 0 V2324C
2310~ — 7 —1-2324D
2312~ 7 ... 7 T V2I24E
2314~ - 7 TV -2324F
2316~ 7 . .. 7 T 23246
2308~ = - 7 123241 | 4 KB
2320~ v 7 —1-2324) - BLOCK
2222~ . .. 0 0 V2524 2324
2324 ~4 7 . oo 7 7 2324K
2326~ . .- 0 0 V2324L
2328~y — 0 0 V2324M
——— pa— J
8ir 31 giri1 8T o
sLock 4 (CP=B1T) (FS-BIT)
2304 === | .o 7 7 2264
2308 =a—e= ! > o0 0 7 p2326C
2310 ===] .. 7 7 23260
2312 ——ed] . .- 7 7 V2I26E
2314 ~—={ 0 . .. 7 0 p2326F
2318 ~a—ee 7 R 7 123261 | 4 KB
2320 ——ei 0 <. 7 123261 (- BLOCK
2320 —a—wi | PP 0 T p2326/ 2326
2324 =w—e{ (0 .o 7 0 V226K
2306 —e—ei 7 . .. 0 T 23261
2328 —a—ei e e o

SUBSTITUTE SHEET (RULE 26)

NSDOCID: <WO___9428807A1_I_>

PCT/US94/06320

WO 94/29807

21/39

]

0vs¢ 4~ |

1394

2

Em.w-_\‘

L

]

90£7
* . r\l

. 28057

=7 “%%N

osT Veose

. 290£7

e “n%%w

0b57 | _—— V905
YA
X078
gy #

1444
Jl4 300N

J/1 "9l
300N
100
COLC~ 4 yaomg

04NISH

SUBSTITUTE SHEET (RULE 26)

I>

S428807A1

BNSDOCID: «WO.

PCT/US94/06320

WO 94/29807

22/39

—

1

14214
i

dYWH18

4434 .SQ_\I

L
]

NS 4

4
Al

7 .

0957 T T
ad

Shw-_\

L]

. 080€7
“&s&

| B85
v = Veose
[——— |0z
: | —290c2

4414 \.%%N
1A

¥4
X018
ax v

grec
J4 00N

4/1 9l
00N
100¥

L oo
0INISS

SUBSTITUTE SHEET (RULE 26)

NSDOCID: <WO___9429807A1_I_>

PCT/US94/06320

WO 94/29807

23/39

#
92527

1

14414
i

dvwyig L

oz 315 — |
ozez 417

9I£7 —
91£C —

re

72¢2 -

’)
pic7 "]
ovz 314 -]
e L

QNww.\rL d

A 7

A 0

3

I

N

8052
¥ . 1\.
. J80£Z
e
e
] |z,
I .
. 99057
wm \.\l%ﬁ
YA L 094

114
42078
a4 v

.ovmm.

Jlo JA0NI

/L1

414

Il

JA0NI
1004

X074
04NIS4

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO___9429807A1_I_>

PCT/US94/06320

WO 94/29807

24/39

24

9767]

— —

14494
Jid

g <~

N A
—

22 311 7
02£ -1

4

0rsC 4114~ |

gy

QR.N__u\I ’

_

*H

4087
4078
b

9rfC
4 F00M

H/L 9Ol
ET]
100Y

20827 yoorg
NS

SUBSTITUTE SHEET (RULE 26)

NSDOCID: <WO___8429807A1_I_>

PCT/US94/06320

WO 94/29807

N v

14444 .St_l —]

ozcz

k]

Al

K|

25/39

S
—
|

0vsZ 3714 A N

g

NR,NL\

SQ\T

L]

it

yosc
X079
ax v

L1214
Jil4 J00NI

ML 9l

JGONI
1004

05 yoptg
0INIS

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: «<WO___9429807A1_|_»>

PCT/US94/06320

WO 94/29807

26/39

- Yy .NR N Q\h\
1444 " n“_—\ 9767 .
4
dmya |
A e
_\ o 8057
s .
b5z 3141 mwm —A-g80ez
A ¢ — 9057
9157 p
.|| Aos0ez
w | o A
A e
Grie M v0£Z
Ty
9
picz " — ——— —— - "
ez A — | 3007
._\ g 114
Alv4 49078
saz_\ 4 o
. 1w o
_ ov4 0INIS

J4 300N

SUBSTITUTE SHEET (RULE 26)

NSDOCID: <WO___8429807A1__>

WO 94/29807 ' PCT/US94/06320

27/39

FIG. T18A | |
1810

1814
FSINFO g /{,

BLOCK
| 1 -6
INODE 18104 |

OR INODE FILE

L 1830
(' 1810
FSINFO]
BLOCK i / p _/l' 1812
INODE 1810A 1814
OR INODE HLE{ | s M
1 | — 1} 1816
— > /l— 1818
| |
| F L1820
1830
SNAPSHOT
NODE | :/
|
L _— 1822]
FIG. 188

BNSDOCID: <WO__0420807A1_1_> SUBSTITUTE SHEET (RULE 26)

WO 94/29807 PCT/US94/06320

28/39

FIG. 18C

(- 1810

FSINFO [B
BLOCK / J /l‘ 1812
INODE 1810 1814
OR INODE HLE{ | g M~
l A 1816
l 1878\
} mi
l £ N< 1820
SNAPSHOT »
NODE | D’)""824
|
L - 1822 1650

NSDOCID: <WO_9429807A1_1_> : SUBSTITUTE SHEET (RULE 26)

WO 94/29807

BNSDOCID: <WO___9429807A1_I_>

FIG.

19

SUBSTITUTE SHEET (RULE 26)

PCT/US94/06320
29/39
INODE OF
INODE _FILE g 1824
LT Ty "E
02— 202 0 ;
] | U f-—4\1928] !
! 1
| ']
: i X 1924 - !
. 1 . . |
S R T\ | S !
5 | 1023\ | (210237, | !
/ ! \-1926 e /oo
810 B S e . 1918 1914 |
E |
[:
: !
| :
! 1
E :
. -1816 | . 1920 19127 |
: | . D
|
| ;
!]
' i
| 07 |
1]
! i
i |
{ (|
t 1
1820 | 1622 NEW BLOCK
]
DOUBLE- SINGLE= DRECT
INDIRECT INDIRECT BLOCKS
BLOCKS BLOCKS

WO 94/29807

PCT/US94/06320
30/39
FSINFO
BLOCK 1810 F-/G ZOA
—1 -~ 18100
koOr _amel -
7870/4 {) INODE ’,/’ ‘\\\
/ N\
/ FILE \
FSINFO { SYSTEM
BLOCK 1870 \ 1830]
\ J
5 - 18700
RrROOT
1870D { INODE
FSINFO :

7 - 18100
ROOT
78704<{: NODE

FSINFO ! SYSTEM
BLOCK 1870

T

1~ 18700

ROOT
’8700'<: INODE

INSDOCID: <WO____9426807A1_)_>

SUBSTITUTE SHEET (RULE 26)

M

WO 94/29807

BNSDOCID: <WO___9420807A1_1_>

31/39

PCT/US94/06320

FSINFO
BLOCK 1810
7 ~ 18100
RrROOT —_——
IBIUA { INODE \ /,/’, \\\\
. - N
/ FILE \‘
FSINFO { SYSTEM
BLOCK 1870 \ 1830]
hY ,/
7 |~ 18700
rooT
18700 {
— FIG. 20C
SNAPSHOT 2 BIT
BT 31 Br2 BT1 BT0
slock § (€P-8IT) (FS-BIT)
2304 =1 XK]] T p2daeA
2306 =~ 0 s v 0 1 0 V23268
2308 =—= 1 XK 7 0 V23260
2312 =i] -] 7 7 {226E
2314 0 xx 7 7 1 -2326F
2320 ——{ 0 ... 0 7 0 V23261 231%
2322 =] .- 7 0 2926/
2324 ~—={__ 0 .- 0 7 51 -2326K
2306 =w—eml | ... 7 0 7 }p2326L
2328 —=—= s
Lﬁ —— e —] »

FIG. 21E

SUBSTITUTE SHEET (RULE 26)

L]

PCT/US94/06320

WO 94/29807

32/39

vic "9l

\é&
' : \%%N JA0N! Z LOHSAYNS
28052
e .“.l%ﬁ
v = (1 YA
_,l] | —90£2
: 29057
T
e —aose
Dpeslr—10sz
300N]
b007 100y
40078
gy ¥
. 20EC yootg
9962 04NISS

34 300N

SUBSTITUTE SHEET (RULE 26)

NSDOCID: <WO__9420807A1_I_>

PCT/US94/06320

WO 94/29807

33/39

*
9252

1444
Jid

pd

dYWx18 L

0r£C 314~ |

NRN_\ .

SM.NL\

7494

L

8057
¥ . |\I
28052
57 “m&&
A = VROse
_\..l] | socz
: 29062
BT owee
v v90£e
YA
%9078
gy ¥
az

U4 300N

glc 9Ol

08¢

\.%&, Z 300N Z 10HSdWNS

g
=
g
I
[*¥]
&
&
[aa]
3

300N

1004

Y08

03NS

BNSDOCID: <WO__9420807A1_I_>

j

8

PCT/US94/06320

WO 94/29807

34/39
3
—

0¥¢ .ﬁt_‘I
NR.N_\

Sm.m._\

L

ol Ol

goge
S

* X \%%N 00N Z LOHSAWNS

JA0NI_100¢ .\.om%. ¢

b
e

057 YR05¢

[— L | oo

; | —o90cz
TS
A R

J00NT
$0£7 100Y
X078
gy ¥

] AR

967 0INIS

U4 300N

SUBSTITUTE SHEET (RULE 26)

3NSDOCID: <WO__9426807A1_1_>

PCT/US94/06320

- qlz o4

WO 94/29807

b2 3
v
144 Y4 I
EVY
B N7 Y I 14
LAY I [— | . (8057 J00N! Z 1OHSIWNS
A 4 TN I008 | s
3 A P 1A
2 sQ_\ /124Y4 — V9057
N o
5 e
k P i r : N S
25z 2 Zif *\\MI%%N
[114%4 — V057
’ 9
157" |
A — ETT
ovéc 31 g ., YA | 1004
cife |_\ . 078
ay ¥ _\
sa_\ d 2 "
L L gog Y078
97 03NS

34 J00N

SUBSTITUTE SHEET (RULE 26)

I>

BNSDOCID: <WO__9429807A1

PCT/US94/06320

WO 94/29807

36/39
©
<

\

_\

0v£C 371

NR.NL\

SQ_\

L

4L 9Ol

r0£C
X078
ax v

~80£¢C

JAONI_100¢

114¥4

494

J14 300N

P97
e

]

—J80£¢

— 8805C
~ VB0LC

— 905C

—290£¢
—890§¢
—~ V90£C

c0Le

09052 300N Z 10HSAYNS

JAONI
1004

A00718
04NISS

SUBSTITUTE SHEET (RULE 26)

NSDOCID: <WO___9420807A1_|_>

WO 94/29807

PCT/US94/06320

37 /39
ESINFO FSINFO
BLOCK 2104~ BLOCK aupsior 270
INODE FILES /*/ 2122~
e
{ { % ”
21022 /Ng%/v
1207 \,2\120/4 ROOT
INODE A DIRECTORY
HE 2126
SNAPSHOT 1 N
INODE 2110A
SNAPSHOT 2
INODE 21108
SNAPSHOT 3 — - 21304
INODE 2110C | \
E |~ 2140
SLHP o7 | 21408
INODE 2110D T
INOMAP
INODE 2110E BU;‘%LE 2112
ROOT DIRECTORY
2110F s 2114
. INOMAP
) ROOT | 2116
FILE INODE 1207 DIRECTORY
FILE
1207~ 1
— N\ ACTVE
FIG. 22 FILE SYSTEM

BNSDOCID: <WO___9429807A1_I_>

INODE FILE 2110

SUBSTITUTE SHEET (RULE 26)

o

PCT/US94/06320

WO 94/29807

38/39

vee "Ol4

0i¥¢

X0074 VM
193410

02627

reve
SYIINIOd 91

£¢ve
AL §S3I9Y

I\IJ

WVGL6 05/% |

X078 314
J00N! 14VM

\AI\I
05¥Z
N A
SYINIO 9! 2602 J00N!
1OHSAWNS
WY00:01_1/S
44 (4 1Y% /4
300N! L STV
s A
%0078
0INIS

SUBSTITUTE SHEET (RULE 26)

N>

8429807A1

INSDOCID: <WO.

PCT/US94/06320

WO 94/29807

39/39

g¢c Ol

0i¥2
\

o018 vM
193410

\. S
0cre

vere
SYIINIOd 91

Zhe \ :EQ..E Nmn

ML SSFIIV

40078 300N/
M aio

_ {\|j
1524
VA4 1A
300N 824
SY3INIOd 9! ¥ 262 300N
1OHSJWNS
W00-0L /8
£0hz \
WL SSIY
e A
X078

04NISS

SUBSTITUTE SHEET (RULE 26)

8429807A1_I_>

BNSDOCID: <WO,

JOZ G50 A1

Dated Y iiol

INTERNATIONAL SEARCH REPORT

w

Intcrnational application No.
PCT/US94/06320

AL CLASSIFICATION OF SUBJECT MATTER
IPC15) :GOG6F 15/40
LS CL : 395/600

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.s. 395/600

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

‘hou .

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US, A, 5,043,876 (TERRY) 27 AUGUST 1991 COL. 3, LINES|{ 1, 2
9-30
Y US, A, 5,043,871 (NISHIGAKI! ET AL) 27 AUGUST 1991, 1, 2
COL. 1, LINES 24-30, COL. 3, LINES 15-34.
A US, A, 5,163,148 (WALLS) 10 NOVEMBER 1992 SEE THE| 1, 2

ENTIRE DOCUMENT

D Further documents are listed in the continuation of Box C.

D Sec patent family annex.

hd Special gorics of cited d

‘A° d ! state of the ast which is not considered
mbepnﬂofpnm«:uhrnkvnm

2 defini

“E° earljer document published on or after the internotional filing date
°L document whirh moy Ihrw doubts on pnonty clmm(l) or which
cited o blish the p date of or other
P (as specifi
0 document referring 0 an orul disclosure. use, exhibition or other
mcans
P document published prior to the intemational filing date but Inter than

the prionity dute claimed

T lster document published afier the mtcmonal filing dote or pnonly
dste and not in conflict with the ap ion but cited 1o und
principle or theory underlying lh: inveation
X document of panticular . the claimed @ be
idered novel or be id ered w involve an inventive siep
when the document is taken slone
Y* documenl of paniculm' : the claimed & be
on & sve siep when the docurnenl s
eombmed \v;u\ one or more other such d such
being obvious to o person skilled in the art
“&° document member of the same patent family

NSDOCID: <WO.

Date of the actual completion of the international search

22 SEPTEMBER 1994

Date of mailing of the international search report

0CT 1319%4

Name and mailing address of the 1ISA/US
Commissioner of Patents and Trademarks
Box PCT

Washington. D.C. 20231
Facsimile No. (703) 305-9564

JOHN LOOMIS

Authorized officer (7
'/J«f,

Telephone Na. - (703) 305-3833

Form PCT/ISA/210 (second shect)(July 1992)»

__O420807A1_I_>

	2001-07-02 Foreign Reference

